Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 43003 by abdo.msup.com last updated on 06/Sep/18

let u_n = Σ_(1≤i<j≤n)   (1/(√(ij)))  1) find a equivalent of u_n   2)calculate lim_(n→+∞)  u_n

$${let}\:{u}_{{n}} =\:\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} \:\:\frac{\mathrm{1}}{\sqrt{{ij}}} \\ $$ $$\left.\mathrm{1}\right)\:{find}\:{a}\:{equivalent}\:{of}\:{u}_{{n}} \\ $$ $$\left.\mathrm{2}\right){calculate}\:{lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} \\ $$

Answered by maxmathsup by imad last updated on 07/Sep/18

1)  we have  (Σ_(i=1) ^n  (1/(√i)))^2  = Σ_(i=1) ^n  (1/i) +2 Σ_(1≤i<j≤n)     (1/(√i)) (1/(√j))  = H_n  + 2u_n       ⇒u_n =(1/2){ (Σ_(i=1) ^n   (1/(√i)))^2  −H_n )  by we have provedthat  Σ_(i=1) ^n   (1/(√i))  ∼ 2(√n)(n→+∞)  and H_n = ln(n) +γ +o((1/n)) ⇒  u_n   ∼ (1/2){  4n −ln(n)−γ +o((1/n))} ⇒ u_n  ∼ 2n −ln((√n)) −(γ/2) +o((1/n))   2) we have u_n  ∼ 2n −ln((√n)) −(γ/2) +o((1/n)) but   lim_(n→+∞)  2n−ln((√n)) =lim_(n→+∞)  n(2−((ln(n))/(2n))) =lim_(n→+∞)  (2n) =+∞ ⇒  lim_(n→+∞)  u_n  =+∞ .

$$\left.\mathrm{1}\right)\:\:{we}\:{have}\:\:\left(\sum_{{i}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\sqrt{{i}}}\right)^{\mathrm{2}} \:=\:\sum_{{i}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{i}}\:+\mathrm{2}\:\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} \:\:\:\:\frac{\mathrm{1}}{\sqrt{{i}}}\:\frac{\mathrm{1}}{\sqrt{{j}}} \\ $$ $$=\:{H}_{{n}} \:+\:\mathrm{2}{u}_{{n}} \:\:\:\:\:\:\Rightarrow{u}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\left(\sum_{{i}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\sqrt{{i}}}\right)^{\mathrm{2}} \:−{H}_{{n}} \right)\:\:{by}\:{we}\:{have}\:{provedthat} \\ $$ $$\sum_{{i}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\sqrt{{i}}}\:\:\sim\:\mathrm{2}\sqrt{{n}}\left({n}\rightarrow+\infty\right)\:\:{and}\:{H}_{{n}} =\:{ln}\left({n}\right)\:+\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:\Rightarrow \\ $$ $${u}_{{n}} \:\:\sim\:\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\:\mathrm{4}{n}\:−{ln}\left({n}\right)−\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\right\}\:\Rightarrow\:{u}_{{n}} \:\sim\:\mathrm{2}{n}\:−{ln}\left(\sqrt{{n}}\right)\:−\frac{\gamma}{\mathrm{2}}\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\: \\ $$ $$\left.\mathrm{2}\right)\:{we}\:{have}\:{u}_{{n}} \:\sim\:\mathrm{2}{n}\:−{ln}\left(\sqrt{{n}}\right)\:−\frac{\gamma}{\mathrm{2}}\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:{but}\: \\ $$ $${lim}_{{n}\rightarrow+\infty} \:\mathrm{2}{n}−{ln}\left(\sqrt{{n}}\right)\:={lim}_{{n}\rightarrow+\infty} \:{n}\left(\mathrm{2}−\frac{{ln}\left({n}\right)}{\mathrm{2}{n}}\right)\:={lim}_{{n}\rightarrow+\infty} \:\left(\mathrm{2}{n}\right)\:=+\infty\:\Rightarrow \\ $$ $${lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} \:=+\infty\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com