Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 43023 by ajfour last updated on 06/Sep/18

Commented by ajfour last updated on 06/Sep/18

Find location of centre(0,h) and  radius R of circle such that  all four bounded areas   OAD^(⌢)  , APB^(⌢) A , ABC^(⌢) DA^(⌢)  , & CQD^(⌢) C   are equal.  Determine R, h in terms of 𝛉 .

$${Find}\:{location}\:{of}\:{centre}\left(\mathrm{0},{h}\right)\:{and} \\ $$$${radius}\:{R}\:{of}\:{circle}\:{such}\:{that} \\ $$$${all}\:{four}\:{bounded}\:{areas}\: \\ $$$${O}\overset{\frown} {{AD}}\:,\:\overset{\frown} {{APB}A}\:,\:{A}\overset{\frown} {{BC}}\overset{\frown} {{DA}}\:,\:\&\:\overset{\frown} {{CQD}C}\: \\ $$$${are}\:{equal}. \\ $$$${Determine}\:\boldsymbol{{R}},\:\boldsymbol{{h}}\:{in}\:{terms}\:{of}\:\boldsymbol{\theta}\:. \\ $$

Answered by MrW3 last updated on 07/Sep/18

Commented by MrW3 last updated on 07/Sep/18

R sin γ=h sin θ  ⇒sin γ=(h/R) sin θ  with λ=(h/R)  ⇒γ=sin^(−1) (λ sin θ)  α=γ−θ  β=γ+θ    Δ_(OMD) =(h/2)×R sin α  Δ_(OMC) =(h/2)×R sin β  A_(OAD) =2×(h/2)×R sin α−αR^2 =((πR^2 )/3)  ⇒(h/R) sin α−α=(π/3)  ⇒λ sin [sin^(−1) (λ sin θ)−θ]−[sin^(−1) (λ sin θ)−θ]=(π/3)   ...(i)    A_(OBC) =2×(h/2)×R sin β+βR^2 =((2πR^2 )/3)  ⇒(h/R) sin β+β=((2π)/3)  ⇒λ sin [sin^(−1) (λ sin θ)+θ]+[sin^(−1) (λ sin θ)+θ]=((2π)/3)   ...(ii)    from (i) and (ii) we get λ and θ.    I found a solution:  λ=(h/R)≈5.763  θ≈2.64°

$${R}\:\mathrm{sin}\:\gamma={h}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow\mathrm{sin}\:\gamma=\frac{{h}}{{R}}\:\mathrm{sin}\:\theta \\ $$$${with}\:\lambda=\frac{{h}}{{R}} \\ $$$$\Rightarrow\gamma=\mathrm{sin}^{−\mathrm{1}} \left(\lambda\:\mathrm{sin}\:\theta\right) \\ $$$$\alpha=\gamma−\theta \\ $$$$\beta=\gamma+\theta \\ $$$$ \\ $$$$\Delta_{{OMD}} =\frac{{h}}{\mathrm{2}}×{R}\:\mathrm{sin}\:\alpha \\ $$$$\Delta_{{OMC}} =\frac{{h}}{\mathrm{2}}×{R}\:\mathrm{sin}\:\beta \\ $$$${A}_{{OAD}} =\mathrm{2}×\frac{{h}}{\mathrm{2}}×{R}\:\mathrm{sin}\:\alpha−\alpha{R}^{\mathrm{2}} =\frac{\pi{R}^{\mathrm{2}} }{\mathrm{3}} \\ $$$$\Rightarrow\frac{{h}}{{R}}\:\mathrm{sin}\:\alpha−\alpha=\frac{\pi}{\mathrm{3}} \\ $$$$\Rightarrow\lambda\:\mathrm{sin}\:\left[\mathrm{sin}^{−\mathrm{1}} \left(\lambda\:\mathrm{sin}\:\theta\right)−\theta\right]−\left[\mathrm{sin}^{−\mathrm{1}} \left(\lambda\:\mathrm{sin}\:\theta\right)−\theta\right]=\frac{\pi}{\mathrm{3}}\:\:\:...\left({i}\right) \\ $$$$ \\ $$$${A}_{{OBC}} =\mathrm{2}×\frac{{h}}{\mathrm{2}}×{R}\:\mathrm{sin}\:\beta+\beta{R}^{\mathrm{2}} =\frac{\mathrm{2}\pi{R}^{\mathrm{2}} }{\mathrm{3}} \\ $$$$\Rightarrow\frac{{h}}{{R}}\:\mathrm{sin}\:\beta+\beta=\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$$\Rightarrow\lambda\:\mathrm{sin}\:\left[\mathrm{sin}^{−\mathrm{1}} \left(\lambda\:\mathrm{sin}\:\theta\right)+\theta\right]+\left[\mathrm{sin}^{−\mathrm{1}} \left(\lambda\:\mathrm{sin}\:\theta\right)+\theta\right]=\frac{\mathrm{2}\pi}{\mathrm{3}}\:\:\:...\left({ii}\right) \\ $$$$ \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right)\:{we}\:{get}\:\lambda\:{and}\:\theta. \\ $$$$ \\ $$$${I}\:{found}\:{a}\:{solution}: \\ $$$$\lambda=\frac{{h}}{{R}}\approx\mathrm{5}.\mathrm{763} \\ $$$$\theta\approx\mathrm{2}.\mathrm{64}° \\ $$

Commented by ajfour last updated on 07/Sep/18

Very Nice Sir, half the task is  done. Rene Descartes said, ′Give  names to all the lines′ (in Geometry).

$${Very}\:{Nice}\:{Sir},\:{half}\:{the}\:{task}\:{is} \\ $$$${done}.\:{Rene}\:{Descartes}\:{said},\:'\mathrm{G}{ive} \\ $$$${names}\:{to}\:{all}\:{the}\:{lines}'\:\left({in}\:{Geometry}\right). \\ $$

Commented by ajfour last updated on 07/Sep/18

Wonderful & Beautiful Sir.  (I had suspected what i had asked  to determine, i see it clearer now)!  So θ accepts just one value, under  the imposed condition..it means.

$${Wonderful}\:\&\:{Beautiful}\:{Sir}. \\ $$$$\left({I}\:{had}\:{suspected}\:{what}\:{i}\:{had}\:{asked}\right. \\ $$$$\left.{to}\:{determine},\:{i}\:{see}\:{it}\:{clearer}\:{now}\right)! \\ $$$${So}\:\theta\:{accepts}\:{just}\:{one}\:{value},\:{under} \\ $$$${the}\:{imposed}\:{condition}..{it}\:{means}. \\ $$

Commented by MrW3 last updated on 07/Sep/18

thank you sir for this nice question.

$${thank}\:{you}\:{sir}\:{for}\:{this}\:{nice}\:{question}. \\ $$

Commented by MrW3 last updated on 07/Sep/18

for a moment I was unsure if such a  configuration is possible at all. now  I know there is one and only one solution.

$${for}\:{a}\:{moment}\:{I}\:{was}\:{unsure}\:{if}\:{such}\:{a} \\ $$$${configuration}\:{is}\:{possible}\:{at}\:{all}.\:{now} \\ $$$${I}\:{know}\:{there}\:{is}\:{one}\:{and}\:{only}\:{one}\:{solution}. \\ $$

Commented by ajfour last updated on 07/Sep/18

A Very wise and practical solution  too, Sir.

$${A}\:{Very}\:{wise}\:{and}\:{practical}\:{solution} \\ $$$${too},\:{Sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com