Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 43031 by aseerimad last updated on 06/Sep/18

Commented by MrW3 last updated on 06/Sep/18

8!×(9+C_2 ^9 )=8!×45=5×9!=1814400

$$\mathrm{8}!×\left(\mathrm{9}+{C}_{\mathrm{2}} ^{\mathrm{9}} \right)=\mathrm{8}!×\mathrm{45}=\mathrm{5}×\mathrm{9}!=\mathrm{1814400} \\ $$

Commented by MrW3 last updated on 07/Sep/18

Explanation:  We arrange at first the other 8 speakers,  there are 8! ways to do this.  There are two methods to arrange the   speakers A and B then:  method 1: A and B are next to each other. There  are 9 possibilities. E.g. XXXXXXBAXX,  or XXXXXXXXBA orBAXXXXXXXX.  method 2: A and B are separated by at  least one of the other 8 people. We  can place A and B in 9 possible positions.  There are C_2 ^9  ways. E.g. XXBXXXXAXX,  or XXXXXXXBXA or BXXXXXXXXA.  Thus the result is  8!×(9+C_2 ^9 )=8!×45=5×9!    Generally in case of n people:  (n−2)!×[(n−1)+C_2 ^(n−1) ]  =(n−2)!×[(n−1)+(((n−1)(n−2))/2)]  =((n(n−1)(n−2)!)/2)  =((n!)/2)

$${Explanation}: \\ $$$${We}\:{arrange}\:{at}\:{first}\:{the}\:{other}\:\mathrm{8}\:{speakers}, \\ $$$${there}\:{are}\:\mathrm{8}!\:{ways}\:{to}\:{do}\:{this}. \\ $$$${There}\:{are}\:{two}\:{methods}\:{to}\:{arrange}\:{the}\: \\ $$$${speakers}\:{A}\:{and}\:{B}\:{then}: \\ $$$${method}\:\mathrm{1}:\:{A}\:{and}\:{B}\:{are}\:{next}\:{to}\:{each}\:{other}.\:{There} \\ $$$${are}\:\mathrm{9}\:{possibilities}.\:{E}.{g}.\:{XXXXXXBAXX}, \\ $$$${or}\:{XXXXXXXXBA}\:{orBAXXXXXXXX}. \\ $$$${method}\:\mathrm{2}:\:{A}\:{and}\:{B}\:{are}\:{separated}\:{by}\:{at} \\ $$$${least}\:{one}\:{of}\:{the}\:{other}\:\mathrm{8}\:{people}.\:{We} \\ $$$${can}\:{place}\:{A}\:{and}\:{B}\:{in}\:\mathrm{9}\:{possible}\:{positions}. \\ $$$${There}\:{are}\:{C}_{\mathrm{2}} ^{\mathrm{9}} \:{ways}.\:{E}.{g}.\:{XXBXXXXAXX}, \\ $$$${or}\:{XXXXXXXBXA}\:{or}\:{BXXXXXXXXA}. \\ $$$${Thus}\:{the}\:{result}\:{is} \\ $$$$\mathrm{8}!×\left(\mathrm{9}+{C}_{\mathrm{2}} ^{\mathrm{9}} \right)=\mathrm{8}!×\mathrm{45}=\mathrm{5}×\mathrm{9}! \\ $$$$ \\ $$$${Generally}\:{in}\:{case}\:{of}\:{n}\:{people}: \\ $$$$\left({n}−\mathrm{2}\right)!×\left[\left({n}−\mathrm{1}\right)+{C}_{\mathrm{2}} ^{{n}−\mathrm{1}} \right] \\ $$$$=\left({n}−\mathrm{2}\right)!×\left[\left({n}−\mathrm{1}\right)+\frac{\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)}{\mathrm{2}}\right] \\ $$$$=\frac{{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)!}{\mathrm{2}} \\ $$$$=\frac{{n}!}{\mathrm{2}} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 06/Sep/18

arrangement of speaker like                supose 1)B is first speaker then A can be any  position out of remaining 9 so  permutation is 1×9×8!  here 1 for B and  8! remaining 8speaker  2)when B second speaker A can be 3rd 4th...10th  so 1×8×8!  3)when B third speaker A  can be 4th 5th...10th  1×7×8!  4) when B 4th speaker A can be 5th 6th...10th  1×6×8!  5)when B 5th soeaker A can be 6th 7th...10th=1  1×5×8!  6)when B 6th speaker A can be 7th 8th..10th  1×4×8!  7)when B 7th speaker A can be 8th 9th 10th  1×3×8!  8)when B 8th speaker A[can be[9th 10th  1×2×8!  9)when B 9th speaker A can be 10th  1×1×8!  so ans is   1×8!(9+8+7+6+5+4+3+2+1)  =1×8!×(9/2){2×9+(9−1)×−1}  =1×8!×(9/2)(18−8)  =8!×9×5  =9!×5

$${arrangement}\:{of}\:{speaker}\:{like} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\left.{supose}\:\mathrm{1}\right){B}\:{is}\:{first}\:{speaker}\:{then}\:{A}\:{can}\:{be}\:{any} \\ $$$${position}\:{out}\:{of}\:{remaining}\:\mathrm{9}\:{so} \\ $$$${permutation}\:{is}\:\mathrm{1}×\mathrm{9}×\mathrm{8}! \\ $$$${here}\:\mathrm{1}\:{for}\:{B}\:{and}\:\:\mathrm{8}!\:{remaining}\:\mathrm{8}{speaker} \\ $$$$\left.\mathrm{2}\right){when}\:{B}\:{second}\:{speaker}\:{A}\:{can}\:{be}\:\mathrm{3}{rd}\:\mathrm{4}{th}...\mathrm{10}{th} \\ $$$${so}\:\mathrm{1}×\mathrm{8}×\mathrm{8}! \\ $$$$\left.\mathrm{3}\right){when}\:{B}\:{third}\:{speaker}\:{A}\:\:{can}\:{be}\:\mathrm{4}{th}\:\mathrm{5}{th}...\mathrm{10}{th} \\ $$$$\mathrm{1}×\mathrm{7}×\mathrm{8}! \\ $$$$\left.\mathrm{4}\right)\:{when}\:{B}\:\mathrm{4}{th}\:{speaker}\:{A}\:{can}\:{be}\:\mathrm{5}{th}\:\mathrm{6}{th}...\mathrm{10}{th} \\ $$$$\mathrm{1}×\mathrm{6}×\mathrm{8}! \\ $$$$\left.\mathrm{5}\right){when}\:{B}\:\mathrm{5}{th}\:{soeaker}\:{A}\:{can}\:{be}\:\mathrm{6}{th}\:\mathrm{7}{th}...\mathrm{10}{th}=\mathrm{1} \\ $$$$\mathrm{1}×\mathrm{5}×\mathrm{8}! \\ $$$$\left.\mathrm{6}\right){when}\:{B}\:\mathrm{6}{th}\:{speaker}\:{A}\:{can}\:{be}\:\mathrm{7}{th}\:\mathrm{8}{th}..\mathrm{10}{th} \\ $$$$\mathrm{1}×\mathrm{4}×\mathrm{8}! \\ $$$$\left.\mathrm{7}\right){when}\:{B}\:\mathrm{7}{th}\:{speaker}\:{A}\:{can}\:{be}\:\mathrm{8}{th}\:\mathrm{9}{th}\:\mathrm{10}{th} \\ $$$$\mathrm{1}×\mathrm{3}×\mathrm{8}! \\ $$$$\left.\mathrm{8}\right){when}\:{B}\:\mathrm{8}{th}\:{speaker}\:{A}\left[{can}\:{be}\left[\mathrm{9}{th}\:\mathrm{10}{th}\right.\right. \\ $$$$\mathrm{1}×\mathrm{2}×\mathrm{8}! \\ $$$$\left.\mathrm{9}\right){when}\:{B}\:\mathrm{9}{th}\:{speaker}\:{A}\:{can}\:{be}\:\mathrm{10}{th} \\ $$$$\mathrm{1}×\mathrm{1}×\mathrm{8}! \\ $$$${so}\:{ans}\:{is}\: \\ $$$$\mathrm{1}×\mathrm{8}!\left(\mathrm{9}+\mathrm{8}+\mathrm{7}+\mathrm{6}+\mathrm{5}+\mathrm{4}+\mathrm{3}+\mathrm{2}+\mathrm{1}\right) \\ $$$$=\mathrm{1}×\mathrm{8}!×\frac{\mathrm{9}}{\mathrm{2}}\left\{\mathrm{2}×\mathrm{9}+\left(\mathrm{9}−\mathrm{1}\right)×−\mathrm{1}\right\} \\ $$$$=\mathrm{1}×\mathrm{8}!×\frac{\mathrm{9}}{\mathrm{2}}\left(\mathrm{18}−\mathrm{8}\right) \\ $$$$=\mathrm{8}!×\mathrm{9}×\mathrm{5} \\ $$$$=\mathrm{9}!×\mathrm{5} \\ $$

Answered by MrW3 last updated on 06/Sep/18

Here is an easy solution:  To arrange 10 people there are 10! ways.  The number of arrangements with  A before B is the same as the number  of arrangements with A behind B.   Thus the solution is ((10!)/2)=1814400.

$${Here}\:{is}\:{an}\:{easy}\:{solution}: \\ $$$${To}\:{arrange}\:\mathrm{10}\:{people}\:{there}\:{are}\:\mathrm{10}!\:{ways}. \\ $$$${The}\:{number}\:{of}\:{arrangements}\:{with} \\ $$$${A}\:{before}\:{B}\:{is}\:{the}\:{same}\:{as}\:{the}\:{number} \\ $$$${of}\:{arrangements}\:{with}\:{A}\:{behind}\:{B}.\: \\ $$$${Thus}\:{the}\:{solution}\:{is}\:\frac{\mathrm{10}!}{\mathrm{2}}=\mathrm{1814400}. \\ $$

Commented by ajfour last updated on 07/Sep/18

excellent Sir.

$${excellent}\:{Sir}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 07/Sep/18

yes sir...thank you...

$${yes}\:{sir}...{thank}\:{you}... \\ $$

Commented by malwaan last updated on 07/Sep/18

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com