Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 431 by 123456 last updated on 25/Jan/15

given  x_(n+1) =(1/(3−x_n ))  x_0 =2  proof that  a.0<x_n ≤2,n∈N  b.x_n  is decreasing  c.lim_(n→∞) x_n

$$\mathrm{given} \\ $$ $${x}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{3}−{x}_{{n}} } \\ $$ $${x}_{\mathrm{0}} =\mathrm{2} \\ $$ $$\mathrm{proof}\:\mathrm{that} \\ $$ $$\mathrm{a}.\mathrm{0}<{x}_{{n}} \leqslant\mathrm{2},{n}\in\mathbb{N} \\ $$ $$\mathrm{b}.{x}_{{n}} \:\mathrm{is}\:\mathrm{decreasing} \\ $$ $$\boldsymbol{\mathrm{c}}.\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}{x}_{{n}} \\ $$

Answered by prakash jain last updated on 03/Jan/15

If x_(n+1) >2  (1/(3−x_n ))>2 ⇒   3> x_n >(5/2)  If x_(n+1) <0  (1/(3−x_n ))<0 ⇒x_n >3  Hence If 0<x_n ≤2 ⇒ 0<x_(n+1) <2  Since x_0 =2, Result a is proved by induction.  If x_(n+1) <x_n  ⇒−x_(n+1) >−x_n   ⇒3−x_(n+1) >3−x_n ⇒(1/(3−x_(n+1) ))<(1/(3−x_n ))⇒x_(n+2) <x_(n+1)   x_(n+1) <x_n ⇒x_(n+2) <x_(n+1)   x_1 =1,x_0 =2,x_1 <x_0 ⇒x_2 <x_1  ⇒x_3 <x_2   Result b proved by induction.  In the limiting case x_(n+1) =x_n   x_(n+1) =x_n =(1/(3−x_n ))  x_n ^2 −3x_n +1=0  x_n =((3±(√(9−4)))/2)  x_n =((3−(√5))/2)  lim_(n→∞) x_n =((3−(√5))/2)

$$\mathrm{If}\:{x}_{{n}+\mathrm{1}} >\mathrm{2} \\ $$ $$\frac{\mathrm{1}}{\mathrm{3}−{x}_{{n}} }>\mathrm{2}\:\Rightarrow\:\:\:\mathrm{3}>\:{x}_{{n}} >\frac{\mathrm{5}}{\mathrm{2}} \\ $$ $$\mathrm{If}\:{x}_{{n}+\mathrm{1}} <\mathrm{0} \\ $$ $$\frac{\mathrm{1}}{\mathrm{3}−{x}_{{n}} }<\mathrm{0}\:\Rightarrow{x}_{{n}} >\mathrm{3} \\ $$ $$\mathrm{Hence}\:\mathrm{If}\:\mathrm{0}<{x}_{{n}} \leqslant\mathrm{2}\:\Rightarrow\:\mathrm{0}<{x}_{{n}+\mathrm{1}} <\mathrm{2} \\ $$ $$\mathrm{Since}\:{x}_{\mathrm{0}} =\mathrm{2},\:\mathrm{Result}\:\mathrm{a}\:\mathrm{is}\:\mathrm{proved}\:\mathrm{by}\:\mathrm{induction}. \\ $$ $$\mathrm{If}\:{x}_{{n}+\mathrm{1}} <{x}_{{n}} \:\Rightarrow−{x}_{{n}+\mathrm{1}} >−{x}_{{n}} \\ $$ $$\Rightarrow\mathrm{3}−{x}_{{n}+\mathrm{1}} >\mathrm{3}−{x}_{{n}} \Rightarrow\frac{\mathrm{1}}{\mathrm{3}−{x}_{{n}+\mathrm{1}} }<\frac{\mathrm{1}}{\mathrm{3}−{x}_{{n}} }\Rightarrow{x}_{{n}+\mathrm{2}} <{x}_{{n}+\mathrm{1}} \\ $$ $${x}_{{n}+\mathrm{1}} <{x}_{{n}} \Rightarrow{x}_{{n}+\mathrm{2}} <{x}_{{n}+\mathrm{1}} \\ $$ $${x}_{\mathrm{1}} =\mathrm{1},{x}_{\mathrm{0}} =\mathrm{2},{x}_{\mathrm{1}} <{x}_{\mathrm{0}} \Rightarrow{x}_{\mathrm{2}} <{x}_{\mathrm{1}} \:\Rightarrow{x}_{\mathrm{3}} <{x}_{\mathrm{2}} \\ $$ $$\mathrm{Result}\:\mathrm{b}\:\mathrm{proved}\:\mathrm{by}\:\mathrm{induction}. \\ $$ $$\mathrm{In}\:\mathrm{the}\:\mathrm{limiting}\:\mathrm{case}\:{x}_{{n}+\mathrm{1}} ={x}_{{n}} \\ $$ $${x}_{{n}+\mathrm{1}} ={x}_{{n}} =\frac{\mathrm{1}}{\mathrm{3}−{x}_{{n}} } \\ $$ $${x}_{{n}} ^{\mathrm{2}} −\mathrm{3}{x}_{{n}} +\mathrm{1}=\mathrm{0} \\ $$ $${x}_{{n}} =\frac{\mathrm{3}\pm\sqrt{\mathrm{9}−\mathrm{4}}}{\mathrm{2}} \\ $$ $${x}_{{n}} =\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$ $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{x}_{{n}} =\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com