Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43100 by maxmathsup by imad last updated on 07/Sep/18

let f(x) = ∫_0 ^(π/2)      ((cosθ)/(1+xsinθ))dθ  1) determine a explicit form of f(x)  2) calculate ∫_0 ^(π/2)    ((sin(2θ))/((1+xsinθ)^2 ))dθ  3) find the values of  ∫_0 ^(π/2)    ((cosθ)/(1+2cosθ))dθ   and  ∫_0 ^(π/2)      ((sin(2θ))/((1+3sinθ)^2 ))dθ .

$${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{cos}\theta}{\mathrm{1}+{xsin}\theta}{d}\theta \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{sin}\left(\mathrm{2}\theta\right)}{\left(\mathrm{1}+{xsin}\theta\right)^{\mathrm{2}} }{d}\theta \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{values}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{cos}\theta}{\mathrm{1}+\mathrm{2}{cos}\theta}{d}\theta\:\:\:{and}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{sin}\left(\mathrm{2}\theta\right)}{\left(\mathrm{1}+\mathrm{3}{sin}\theta\right)^{\mathrm{2}} }{d}\theta\:. \\ $$

Commented by maxmathsup by imad last updated on 08/Sep/18

1) x=0 ⇒f(x)=∫_0 ^(π/2)  cosθ dθ =1  x≠0 ⇒ f(x)= (1/x) ∫_0 ^(π/2)       ((xcosθ)/(1+xsinθ))dθ =(1/x)[ln∣1+xsinθ∣]_0 ^(π/2)  =((ln∣1+x∣)/x) with  x≠−1   and we must study the case x=−1  2) we have f^′ (x) = −∫_0 ^(π/2)  ((sinθ cosθ)/((1+xsinθ)^2 ))dθ =−(1/2) ∫_0 ^(π/2)  ((sin(2θ))/((1+xsinθ)^2 ))dθ ⇒  ∫_0 ^(π/2)    ((sin(2θ))/((1+xsinθ)^2 ))dθ =−2f^′ (x) but  f^′ (x)=−(1/x^2 )ln∣1+x∣ +(1/(x(1+x))) ⇒  ∫_0 ^(π/2)    ((sin(2θ))/((1+xsinθ)^2 ))dθ =((2ln∣1+x∣)/x^2 ) −(2/(x(x+1))) .

$$\left.\mathrm{1}\right)\:{x}=\mathrm{0}\:\Rightarrow{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\theta\:{d}\theta\:=\mathrm{1} \\ $$$${x}\neq\mathrm{0}\:\Rightarrow\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{{x}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\frac{{xcos}\theta}{\mathrm{1}+{xsin}\theta}{d}\theta\:=\frac{\mathrm{1}}{{x}}\left[{ln}\mid\mathrm{1}+{xsin}\theta\mid\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\frac{{ln}\mid\mathrm{1}+{x}\mid}{{x}}\:{with} \\ $$$${x}\neq−\mathrm{1}\:\:\:{and}\:{we}\:{must}\:{study}\:{the}\:{case}\:{x}=−\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{we}\:{have}\:{f}^{'} \left({x}\right)\:=\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{sin}\theta\:{cos}\theta}{\left(\mathrm{1}+{xsin}\theta\right)^{\mathrm{2}} }{d}\theta\:=−\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{sin}\left(\mathrm{2}\theta\right)}{\left(\mathrm{1}+{xsin}\theta\right)^{\mathrm{2}} }{d}\theta\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{sin}\left(\mathrm{2}\theta\right)}{\left(\mathrm{1}+{xsin}\theta\right)^{\mathrm{2}} }{d}\theta\:=−\mathrm{2}{f}^{'} \left({x}\right)\:{but}\:\:{f}^{'} \left({x}\right)=−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }{ln}\mid\mathrm{1}+{x}\mid\:+\frac{\mathrm{1}}{{x}\left(\mathrm{1}+{x}\right)}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{sin}\left(\mathrm{2}\theta\right)}{\left(\mathrm{1}+{xsin}\theta\right)^{\mathrm{2}} }{d}\theta\:=\frac{\mathrm{2}{ln}\mid\mathrm{1}+{x}\mid}{{x}^{\mathrm{2}} }\:−\frac{\mathrm{2}}{{x}\left({x}+\mathrm{1}\right)}\:. \\ $$

Commented by maxmathsup by imad last updated on 08/Sep/18

3) ∫_0 ^(π/2)    ((cosθ)/(1+2sinθ))dθ =f(2)=((ln(3))/2)  also   ∫_0 ^(π/2)   ((sin(2θ))/((1+3sinθ)^2 )) =−2f^′ (3)  =((2ln(4))/9) −(2/(12)) =((4ln(2))/9) −(1/6) .

$$\left.\mathrm{3}\right)\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{cos}\theta}{\mathrm{1}+\mathrm{2}{sin}\theta}{d}\theta\:={f}\left(\mathrm{2}\right)=\frac{{ln}\left(\mathrm{3}\right)}{\mathrm{2}}\:\:{also}\: \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{sin}\left(\mathrm{2}\theta\right)}{\left(\mathrm{1}+\mathrm{3}{sin}\theta\right)^{\mathrm{2}} }\:=−\mathrm{2}{f}^{'} \left(\mathrm{3}\right)\:\:=\frac{\mathrm{2}{ln}\left(\mathrm{4}\right)}{\mathrm{9}}\:−\frac{\mathrm{2}}{\mathrm{12}}\:=\frac{\mathrm{4}{ln}\left(\mathrm{2}\right)}{\mathrm{9}}\:−\frac{\mathrm{1}}{\mathrm{6}}\:. \\ $$

Answered by alex041103 last updated on 08/Sep/18

let u=1+xsinθ  du/x=cosθ dθ  ⇒f(x)=(1/x)∫_1 ^(1+x) (du/u)=((ln(1+x))/x)=f(x)

$${let}\:{u}=\mathrm{1}+{xsin}\theta \\ $$$${du}/{x}={cos}\theta\:{d}\theta \\ $$$$\Rightarrow{f}\left({x}\right)=\frac{\mathrm{1}}{{x}}\int_{\mathrm{1}} ^{\mathrm{1}+{x}} \frac{{du}}{{u}}=\frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}}={f}\left({x}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com