Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 4314 by Filup last updated on 09/Jan/16

S=∫_a ^( b) n^t^2  dt  n∈R    Can we solve S?

$${S}=\int_{{a}} ^{\:{b}} {n}^{{t}^{\mathrm{2}} } {dt} \\ $$$${n}\in\mathbb{R} \\ $$$$ \\ $$$$\mathrm{Can}\:\mathrm{we}\:\mathrm{solve}\:{S}? \\ $$

Commented by Filup last updated on 09/Jan/16

S^2 =∫_a ^( b) n^x^2  dx∫_a ^( b) n^y^2  dy  S^2 =∫_a ^( b) ∫_a ^( b) n^(x^2 +y^2 ) dxdy  Applying the jacobian transform:  S^2 =∫_r_1  ^r_2  ∫_θ_1  ^θ_2  rn^r^2  drdθ        if I am correct  I need a=0  How do I determine the new limits?

$${S}^{\mathrm{2}} =\int_{{a}} ^{\:{b}} {n}^{{x}^{\mathrm{2}} } {dx}\int_{{a}} ^{\:{b}} {n}^{{y}^{\mathrm{2}} } {dy} \\ $$$${S}^{\mathrm{2}} =\int_{{a}} ^{\:{b}} \int_{{a}} ^{\:{b}} {n}^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } {dxdy} \\ $$$$\mathrm{Applying}\:\mathrm{the}\:\mathrm{jacobian}\:\mathrm{transform}: \\ $$$${S}^{\mathrm{2}} =\int_{{r}_{\mathrm{1}} } ^{{r}_{\mathrm{2}} } \int_{\theta_{\mathrm{1}} } ^{\theta_{\mathrm{2}} } {rn}^{{r}^{\mathrm{2}} } {drd}\theta\:\:\:\:\:\:\:\:\mathrm{if}\:\mathrm{I}\:\mathrm{am}\:\mathrm{correct} \\ $$$$\mathrm{I}\:\mathrm{need}\:{a}=\mathrm{0} \\ $$$$\mathrm{How}\:\mathrm{do}\:\mathrm{I}\:\mathrm{determine}\:\mathrm{the}\:\mathrm{new}\:\mathrm{limits}? \\ $$

Commented by prakash jain last updated on 10/Jan/16

Limit on r will be dependent on θ. Basically  θ will be from 0 to 2π. r can be found based  on square in polar coordinates.

$$\mathrm{Limit}\:\mathrm{on}\:{r}\:\mathrm{will}\:\mathrm{be}\:\mathrm{dependent}\:\mathrm{on}\:\theta.\:\mathrm{Basically} \\ $$$$\theta\:\mathrm{will}\:\mathrm{be}\:\mathrm{from}\:\mathrm{0}\:\mathrm{to}\:\mathrm{2}\pi.\:{r}\:\mathrm{can}\:\mathrm{be}\:\mathrm{found}\:\mathrm{based} \\ $$$$\mathrm{on}\:\mathrm{square}\:\mathrm{in}\:\mathrm{polar}\:\mathrm{coordinates}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com