Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43147 by rahul 19 last updated on 07/Sep/18

If   ∫_0 ^∞  e^(−x^2 ) dx = ((√π)/(2 )) ,  then prove that ∫_0 ^∞ e^(−ax^2 ) dx = (√(π/(4a)))  where a>0.

$$\mathrm{If}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−{x}^{\mathrm{2}} } {dx}\:=\:\frac{\sqrt{\pi}}{\mathrm{2}\:}\:, \\ $$ $$\mathrm{then}\:{prove}\:{that}\:\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{a}{x}^{\mathrm{2}} } {dx}\:=\:\sqrt{\frac{\pi}{\mathrm{4a}}} \\ $$ $$\mathrm{where}\:\mathrm{a}>\mathrm{0}. \\ $$

Commented byMrW3 last updated on 07/Sep/18

let t=(√a)x  dt=(√a)dx  dx=(dt/(√a))  ∫_0 ^∞ e^(−ax^2 ) dx  =∫_0 ^∞ e^(−t^2 ) (dt/(√a))  =(1/(√a))∫_0 ^∞ e^(−t^2 ) dt  =(1/(√a))×((√π)/2)  =(√(π/(4a)))

$${let}\:{t}=\sqrt{{a}}{x} \\ $$ $${dt}=\sqrt{{a}}{dx} \\ $$ $${dx}=\frac{{dt}}{\sqrt{{a}}} \\ $$ $$\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}^{\mathrm{2}} } {dx} \\ $$ $$=\int_{\mathrm{0}} ^{\infty} {e}^{−{t}^{\mathrm{2}} } \frac{{dt}}{\sqrt{{a}}} \\ $$ $$=\frac{\mathrm{1}}{\sqrt{{a}}}\int_{\mathrm{0}} ^{\infty} {e}^{−{t}^{\mathrm{2}} } {dt} \\ $$ $$=\frac{\mathrm{1}}{\sqrt{{a}}}×\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$ $$=\sqrt{\frac{\pi}{\mathrm{4}{a}}} \\ $$

Commented byrahul 19 last updated on 07/Sep/18

thank you sir ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com