Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63976 by Scientist0000001 last updated on 11/Jul/19

∫secxdx    ?

secxdx?

Commented by Prithwish sen last updated on 12/Jul/19

∫((sec^2 (x/2))/(1−tan^2 (x/2)))dx    putting tan(x/2) = t  sec^2 (x/2)dx = 2dt    ∴2∫(dt/(1−t^2 )) = ∫[(1/(1−t))+(1/(1+t))]dt  =ln∣((1+t)/(1−t))∣ + C

sec2x21tan2x2dxputtingtanx2=tsec2x2dx=2dt2dt1t2=[11t+11+t]dt=ln1+t1t+C

Commented by hknkrc46 last updated on 11/Jul/19

∫secxdx=∫(dx/(cosx))=∫((cosx)/(cos^2 x))dx=∫((cosx)/(1−sin^2 x))dx  sinx=u⇒cosxdx=du  ∫(du/(1−u^2 ))=(1/2)∫(((1−u)+(1+u))/((1−u)(1+u)))du  =(1/2)[∫((1−u)/((1−u)(1+u)))du+∫((1+u)/((1−u)(1+u)))du]  =(1/2)[∫(du/(1+u))+∫(du/(1−u))]=(1/2)[ln (1+u)−ln (1−u)]+c  =(1/2)ln (((1+u)/(1−u)))+c=(1/2)ln (((1+sinx)/(1−sinx)))+c ★  =(1/2)ln ((((1+sinx)^2 )/((1+sinx)(1−sinx))))+c  =(1/2)ln ((((1+sinx)^2 )/(1−sin^2 x)))+c  =(1/2)ln ((((1+sinx)^2 )/(cos^2 x)))+c=ln (((1+sinx)/(cosx)))+c  =ln ((1/(cosx))+((sinx)/(cosx)))+c=ln (secx+tanx)+c ★★  =ln (secx+tanx)+ln e^c =ln (e^c (secx+tanx))  =ln (c_1 (secx+tanx)) ★★★  {c , c_1  ∈R }

secxdx=dxcosx=cosxcos2xdx=cosx1sin2xdxsinx=ucosxdx=dudu1u2=12(1u)+(1+u)(1u)(1+u)du=12[1u(1u)(1+u)du+1+u(1u)(1+u)du]=12[du1+u+du1u]=12[ln(1+u)ln(1u)]+c=12ln(1+u1u)+c=12ln(1+sinx1sinx)+c=12ln((1+sinx)2(1+sinx)(1sinx))+c=12ln((1+sinx)21sin2x)+c=12ln((1+sinx)2cos2x)+c=ln(1+sinxcosx)+c=ln(1cosx+sinxcosx)+c=ln(secx+tanx)+c=ln(secx+tanx)+lnec=ln(ec(secx+tanx))=ln(c1(secx+tanx)){c,c1R}

Commented by mathmax by abdo last updated on 11/Jul/19

let I =∫ (dx/(cosx)) changement tan((x/2))=t give  I =∫   ((2dt)/((1+t^2 )((1−t^2 )/(1+t^2 )))) =∫   ((2dt)/(1−t^2 )) =∫  ((1/(1−t)) +(1/(1+t)))dt  ln∣((1+t)/(1−t))∣+c =ln∣((1+tan((x/2)))/(1−tan((x/2))))∣ +c =ln∣tan((π/4) +(x/2))∣ +c .

letI=dxcosxchangementtan(x2)=tgiveI=2dt(1+t2)1t21+t2=2dt1t2=(11t+11+t)dtln1+t1t+c=ln1+tan(x2)1tan(x2)+c=lntan(π4+x2)+c.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com