Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43158 by MASANJA J last updated on 07/Sep/18

∫cosecxdx

cosecxdx

Commented by maxmathsup by imad last updated on 07/Sep/18

let I = ∫   (dx/(sin(x))) changement tan((x/2))=t give  I = ∫    (1/((2t)/(1+t^2 ))) ((2dt)/(1+t^2 )) = ∫  (dt/t) =ln∣t∣ +c =ln∣tan((x/2))∣ +c .

letI=dxsin(x)changementtan(x2)=tgiveI=12t1+t22dt1+t2=dtt=lnt+c=lntan(x2)+c.

Answered by tanmay.chaudhury50@gmail.com last updated on 07/Sep/18

∫(dx/(sinx))  ∫((sinx)/(sin^2 x))dx  ∫((sinx)/(1−cos^2 x))dx  t=cosx  dt=−sinx dx  ∫((−dt)/(1−t^2 ))  ∫(dt/((t+1)(t−1)))  (1/2)∫(((t+1)−(t−1))/((t+1)(t−1)))dt  (1/2)[∫(dt/(t−1))−∫(dt/(t+1))]  (1/2)[ln(t−1)−ln(t+1)]  (1/2)ln∣((t−1)/(t+1))∣+c  =(1/2)ln∣((cosx−1)/(cosx+1))∣+c  =(1/2)ln∣((1−2sin^2 (x/2)−1)/(2cos^2 (x/2)))∣+c  =(1/2)ln∣tan^2 (x/2)∣+c  =ln(tan(x/2))+c  recheck  (d/dx){lntan(x/2)}=(1/(tan(x/2)))×sec^2 (x/2)×(1/2)  =(1/(2×((sin(x/2))/(cos(x/2)))×cos^2 (x/2)))  =(1/(2sin(x/2)×cos(x/2)))=(1/(sinx))=cosecx

dxsinxsinxsin2xdxsinx1cos2xdxt=cosxdt=sinxdxdt1t2dt(t+1)(t1)12(t+1)(t1)(t+1)(t1)dt12[dtt1dtt+1]12[ln(t1)ln(t+1)]12lnt1t+1+c=12lncosx1cosx+1+c=12ln12sin2x212cos2x2+c=12lntan2x2+c=ln(tanx2)+crecheckddx{lntanx2}=1tanx2×sec2x2×12=12×sinx2cosx2×cos2x2=12sinx2×cosx2=1sinx=cosecx

Answered by $@ty@m last updated on 08/Sep/18

∫cosec x×((cosec x+cot x)/(cosec x+cot x))dx  =−∫((−cosec^2 x−cosec x.cotx)/(cosec x+cot x))dx  =−ln (cosec x+cot x)+C

cosecx×cosecx+cotxcosecx+cotxdx=cosec2xcosecx.cotxcosecx+cotxdx=ln(cosecx+cotx)+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com