Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 43192 by Raj Singh last updated on 08/Sep/18

Commented by Rauny last updated on 09/Sep/18

cosec x+sec x=(1/(sin x))+(1/(cos x))=2  cos x+sin x=2sin xcos x  A=B⇒A^2 =B^2 ,  cos^2  x+2sin xcos x+sin^2  x=4sin^2  xcos^2  x  by the way ∀x: sin^2  x+cos^2  x=1  viz. 2sin xcos x+1=4sin^2  xcos^2  x  let sin xcos x=X,  4X^2 −2X−1=0  X=((1±(√5))/4)=sin xcos x  sin^2  xcos^2  x=((3±(√5))/8)  =sin^2  x(1−sin^2  x) ∵cos^2  x=1−sin^2  x  −sin^4  x+sin^2  x−((3±(√5))/8)=0  let sin^2  x=S,  S^2 −S+((3±(√5))/8)=−0=0  S=((1+(√((5∓(√5))/8)))/2) or ((1−(√((5∓(√5))/8)))/2)  =(1/2)(1+(√((5+(√5))/8))) or (1/2)(1+(√((5−(√5))/8)))  or (1/2)(1−(√((5+(√5))/8))) or (1/2)(1−(√((5−(√5))/8)))  ∴cosec x=(2/(1+(√((5+(√5))/8)))) or (2/(1+(√((5−(√5))/8))))  or (2/(1−(√((5+(√5))/8)))) or (2/(1−(√((5−(√5))/8))))  or ((−2)/(1+(√((5+(√5))/8)))) or ((−2)/(1+(√((5−(√5))/8))))  or ((−2)/(1−(√((5+(√5))/8)))) or ((−2)/(1−(√((5−(√5))/8))))  ■  omg..

cosecx+secx=1sinx+1cosx=2cosx+sinx=2sinxcosxA=BA2=B2,cos2x+2sinxcosx+sin2x=4sin2xcos2xbythewayx:sin2x+cos2x=1viz.2sinxcosx+1=4sin2xcos2xletsinxcosx=X,4X22X1=0X=1±54=sinxcosxsin2xcos2x=3±58=sin2x(1sin2x)cos2x=1sin2xsin4x+sin2x3±58=0letsin2x=S,S2S+3±58=0=0S=1+5582or15582=12(1+5+58)or12(1+558)or12(15+58)or12(1558)cosecx=21+5+58or21+558or215+58or21558or21+5+58or21+558or215+58or21558omg..

Commented by Rauny last updated on 10/Sep/18

  I made so many mistakes..   the real sollution: cosec x+sec x=2  ⇒sin x=(√((1/2)+((√(5+2(√5)))/2)i)),  cosec x=(((1−(√(5+2(√5))))(√((1/2)+((√(5+2(√5)))/2)i)))/(3+(√5)))  =(1/4)(3−(√5))(1−(√(5+2(√5))))(√((1/2)+((√(5+2(√5)))/2)i))  I have to sleep now. sorry!

Imadesomanymistakes..therealsollution:cosecx+secx=2sinx=12+5+252i,cosecx=(15+25)12+5+252i3+5=14(35)(15+25)12+5+252iIhavetosleepnow.sorry!

Commented by Rauny last updated on 14/Sep/18

REALLY  EXCELLENT SOLLUTION:  cosec x+sec x=2  sin x+cos x=2sin xcos x  sin x=((e^(ix) −e^(−ix) )/(2i)), cos x=((e^(ix) +e^(−ix) )/2)  And e^(ix) :=E  Then ((E−E^(−1) )/(2i))+((E+E^(−1) )/2)=(((E−E^(−1) )(E+E^(−1) ))/(2i))  ⇒((E−E^(−1) +iE+iE^(−1) )/(2i))=((E^2 −E^(−2) )/(2i))  (1+i)E−(1−i)E^(−1) =E^2 −E^(−2)   E^2 −(1/E^2 )−(1+i)E+((1−i)/E)=0  E^2 +2i−(1/E^2 )−E−Ei+(1/E)−(1/E)i−2i=0  (E+(1/E)i)^2 −(E+(1/E)i)−(Ei−(1/E))−2i=0  ⇒(E+(1/E)i)^2 −(E+(1/E)i)−(Ei+(1/E)i^2 )−2i=0  ⇒(E+(1/E)i)^2 −(E+(1/E)i)−(E+(1/E)i)i−2i=0  E+(1/E)i:=X,  X^2 −X−Xi−2i=0  X^2 −(1+i)X−2i=0  X=((1±(√(10i))+i)/2)=E+(1/E)i  E^2 +i=((1±(√(10i))+i)/2)E  E^2 −((1±(√(10i))+i)/2)E+i=0  E=(1/2)(−((1±(√(10i))+i)/2)+(√(((±(1+(√(10i))+i)(√(10i)))/4)−(7/2)i))  or (1/2)(−((1±(√(10i))+i)/2)−(√(((±(1+(√(10i))+i)(√(10i)))/4)−(7/2)i))  =e^(ix)   1+i:=j, (√(10i)):=k  e^(ix) =(1/2)(−((j±k)/2)+(√(±((j+k)/4)k−(7/2)i)))  or (1/2)(−((j±k)/2)−(√(±((j+k)/4)k−(7/2)i)))  Then sin x=((e^(ix) −e^(−ix) )/(2i))  =(1/(2i))[−((j±k)/4)+(1/2)(√(±((j+k)/4)k−(7/2)i))−{−(j±k)+2(√(±((j+k)/4)k−(7/2)i))}]  or (1/(2i))[−((j±k)/4)−(1/2)(√(±((j+k)/4)k−(7/2)i))−{−(j±k)−2(√(±((j+k)/4)k−(7/2)i))}]  =(1/(2i)){(3/4)(j±k)−(3/4)(√(±(j+k)k−14i))}  or (1/(2i)){(3/4)(j±k)+(3/4)(√(±(j+k)k−14i))}  cosec x=(1/(sin x))  ∴cosec x+sec x=2∧1+i=j∧(√(10i))=k  ⇒cosec x=((3i)/2){(j±k)+(√(±(j+k)k−14i))}  or ((3i)/2){(j±k)−(√(±(j+k)k−14i))}  Q.E.D.

REALLYEXCELLENTSOLLUTION:cosecx+secx=2sinx+cosx=2sinxcosxsinx=eixeix2i,cosx=eix+eix2Andeix:=EThenEE12i+E+E12=(EE1)(E+E1)2iEE1+iE+iE12i=E2E22i(1+i)E(1i)E1=E2E2E21E2(1+i)E+1iE=0E2+2i1E2EEi+1E1Ei2i=0(E+1Ei)2(E+1Ei)(Ei1E)2i=0(E+1Ei)2(E+1Ei)(Ei+1Ei2)2i=0(E+1Ei)2(E+1Ei)(E+1Ei)i2i=0E+1Ei:=X,X2XXi2i=0X2(1+i)X2i=0X=1±10i+i2=E+1EiE2+i=1±10i+i2EE21±10i+i2E+i=0E=12(1±10i+i2+±(1+10i+i)10i472ior12(1±10i+i2±(1+10i+i)10i472i=eix1+i:=j,10i:=keix=12(j±k2+±j+k4k72i)or12(j±k2±j+k4k72i)Thensinx=eixeix2i=12i[j±k4+12±j+k4k72i{(j±k)+2±j+k4k72i}]or12i[j±k412±j+k4k72i{(j±k)2±j+k4k72i}]=12i{34(j±k)34±(j+k)k14i}or12i{34(j±k)+34±(j+k)k14i}cosecx=1sinxcosecx+secx=21+i=j10i=kcosecx=3i2{(j±k)+±(j+k)k14i}or3i2{(j±k)±(j+k)k14i}Q.E.D.

Commented by Rauny last updated on 13/Sep/18

p.s. I wrote that for 50 minutes. lol

p.s.Iwrotethatfor50minutes.lol

Commented by rahul 19 last updated on 13/Sep/18

My God! ����������

Commented by Rauny last updated on 14/Sep/18

:)

:)

Answered by alex041103 last updated on 08/Sep/18

let cosec φ=t=(1/(sin φ))>1  ⇒sec φ=(1/(cos φ))=(1/(√(1−(1/t^2 ))))=(t/(√(t^2 −1)))  ⇒t+(t/(√(t^2 −1)))=2  (t/(√(t^2 −1)))=2−t  (t^2 /(t^2 −1))=4+t^2 −4t   if t≠1(t=1 is not a solution)  ⇒t^2 =(t^2 −4t+4)(t^2 −1)           =t^4 −4t^3 +4t^2  − t^2 +4t−4  ⇒t^4 −4t^3 +2t^2 +4t−4=0  ⇒the real solutions are:  t_1 =1−(√(2+(√5)))  t_2 =1+(√(2+(√5)))  The two solutions are t_(1,2) ∈R−(−1;1)  ⇒φ_(1;2)  exists  ⇒cosecφ=1−(√(2+(√5)));1+(√(2+(√5)))

letcosecϕ=t=1sinϕ>1secϕ=1cosϕ=111t2=tt21t+tt21=2tt21=2tt2t21=4+t24tift1(t=1isnotasolution)t2=(t24t+4)(t21)=t44t3+4t2t2+4t4t44t3+2t2+4t4=0therealsolutionsare:t1=12+5t2=1+2+5Thetwosolutionsaret1,2R(1;1)ϕ1;2existscosecϕ=12+5;1+2+5

Commented by malwaan last updated on 09/Sep/18

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com