Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 43252 by ajfour last updated on 08/Sep/18

Commented by MJS last updated on 08/Sep/18

circle x^2 +y^2 =1  y=(√(1−x^2 ))  parabola x=ay^2 −1  y=(√(a(x+1))); a>0  circle ∩ parabola  1−x^2 =a(x+1)  x^2 +ax+(a−1)=0  x_1 =−1 [trivial]  x_2 =1−a  y_2 =(√(a(2−a)))    ((area above parabola)/(area below parabola))=2  ((∫_(−1) ^(1−a) (√(1−x^2 ))dx−∫_(−1) ^(1−a) (√(a(x+1)))dx)/(∫_(−1) ^(1−a) (√(a(x+1)))dx+∫_(1−a) ^1 (√(1−x^2 ))dx))=2  (3/2)(arcsin(1−a)+(1−a)(√(a(2−a))))−2(√(a(2−a)^3 ))−(π/4)=0  a≈.0802770  x_2 ≈.919723  y_2 ≈.392568  α=2arctan (y_2 /x_2 ) ≈46.2288°

$$\mathrm{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1} \\ $$$${y}=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$$\mathrm{parabola}\:{x}={ay}^{\mathrm{2}} −\mathrm{1} \\ $$$${y}=\sqrt{{a}\left({x}+\mathrm{1}\right)};\:{a}>\mathrm{0} \\ $$$$\mathrm{circle}\:\cap\:\mathrm{parabola} \\ $$$$\mathrm{1}−{x}^{\mathrm{2}} ={a}\left({x}+\mathrm{1}\right) \\ $$$${x}^{\mathrm{2}} +{ax}+\left({a}−\mathrm{1}\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =−\mathrm{1}\:\left[\mathrm{trivial}\right] \\ $$$${x}_{\mathrm{2}} =\mathrm{1}−{a} \\ $$$${y}_{\mathrm{2}} =\sqrt{{a}\left(\mathrm{2}−{a}\right)} \\ $$$$ \\ $$$$\frac{\mathrm{area}\:\mathrm{above}\:\mathrm{parabola}}{\mathrm{area}\:\mathrm{below}\:\mathrm{parabola}}=\mathrm{2} \\ $$$$\frac{\underset{−\mathrm{1}} {\overset{\mathrm{1}−{a}} {\int}}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{dx}−\underset{−\mathrm{1}} {\overset{\mathrm{1}−{a}} {\int}}\sqrt{{a}\left({x}+\mathrm{1}\right)}{dx}}{\underset{−\mathrm{1}} {\overset{\mathrm{1}−{a}} {\int}}\sqrt{{a}\left({x}+\mathrm{1}\right)}{dx}+\underset{\mathrm{1}−{a}} {\overset{\mathrm{1}} {\int}}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{dx}}=\mathrm{2} \\ $$$$\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{arcsin}\left(\mathrm{1}−{a}\right)+\left(\mathrm{1}−{a}\right)\sqrt{{a}\left(\mathrm{2}−{a}\right)}\right)−\mathrm{2}\sqrt{{a}\left(\mathrm{2}−{a}\right)^{\mathrm{3}} }−\frac{\pi}{\mathrm{4}}=\mathrm{0} \\ $$$${a}\approx.\mathrm{0802770} \\ $$$${x}_{\mathrm{2}} \approx.\mathrm{919723} \\ $$$${y}_{\mathrm{2}} \approx.\mathrm{392568} \\ $$$$\alpha=\mathrm{2arctan}\:\frac{{y}_{\mathrm{2}} }{{x}_{\mathrm{2}} }\:\approx\mathrm{46}.\mathrm{2288}° \\ $$

Commented by ajfour last updated on 09/Sep/18

thank you Sir.

$${thank}\:{you}\:{Sir}. \\ $$

Answered by MrW3 last updated on 08/Sep/18

R=radius  2×(2/3)×R sin (α/2)×(R+R cos (α/2))+(R^2 /2)(α−sin α)=((πR^2 )/3)  ⇒8 sin (α/2) +sin α+3α=2π  ⇒α≈0.8068 rad=46.23°

$${R}={radius} \\ $$$$\mathrm{2}×\frac{\mathrm{2}}{\mathrm{3}}×{R}\:\mathrm{sin}\:\frac{\alpha}{\mathrm{2}}×\left({R}+{R}\:\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right)+\frac{{R}^{\mathrm{2}} }{\mathrm{2}}\left(\alpha−\mathrm{sin}\:\alpha\right)=\frac{\pi{R}^{\mathrm{2}} }{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{8}\:\mathrm{sin}\:\frac{\alpha}{\mathrm{2}}\:+\mathrm{sin}\:\alpha+\mathrm{3}\alpha=\mathrm{2}\pi \\ $$$$\Rightarrow\alpha\approx\mathrm{0}.\mathrm{8068}\:{rad}=\mathrm{46}.\mathrm{23}° \\ $$

Commented by MrW3 last updated on 09/Sep/18

Commented by MrW3 last updated on 09/Sep/18

A_1 =(2/3)×ab=(2/3)×R sin (α/2)×(R+R cos (α/2))  A_2 =(R^2 /2)(α−sin α)  A_(shaded) =2A_1 +A_2 =((πR^2 )/3)

$${A}_{\mathrm{1}} =\frac{\mathrm{2}}{\mathrm{3}}×{ab}=\frac{\mathrm{2}}{\mathrm{3}}×{R}\:\mathrm{sin}\:\frac{\alpha}{\mathrm{2}}×\left({R}+{R}\:\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right) \\ $$$${A}_{\mathrm{2}} =\frac{{R}^{\mathrm{2}} }{\mathrm{2}}\left(\alpha−\mathrm{sin}\:\alpha\right) \\ $$$${A}_{{shaded}} =\mathrm{2}{A}_{\mathrm{1}} +{A}_{\mathrm{2}} =\frac{\pi{R}^{\mathrm{2}} }{\mathrm{3}} \\ $$

Commented by ajfour last updated on 09/Sep/18

straight and wise Sir, thanks.

$${straight}\:{and}\:{wise}\:{Sir},\:{thanks}. \\ $$

Commented by MrW3 last updated on 09/Sep/18

thank you sir.  what about the result if the question  is extended to spacial volume?

$${thank}\:{you}\:{sir}. \\ $$$${what}\:{about}\:{the}\:{result}\:{if}\:{the}\:{question} \\ $$$${is}\:{extended}\:{to}\:{spacial}\:{volume}? \\ $$

Commented by MrW3 last updated on 09/Sep/18

yes a sphere is divided into two equal  parts.

$${yes}\:{a}\:{sphere}\:{is}\:{divided}\:{into}\:{two}\:{equal} \\ $$$${parts}. \\ $$

Commented by ajfour last updated on 09/Sep/18

then there are two regions, not  three!

$${then}\:{there}\:{are}\:{two}\:{regions},\:{not} \\ $$$${three}! \\ $$

Answered by ajfour last updated on 09/Sep/18

3D extension:  sphere:  r^2 +(z−R)^2 =R^2   paraboloid :   z = Ar^2   let A(a, Aa^2 )  ⇒ a^2 +(Aa^2 −R)^2 =R^2   ⇒  Aa^2 =R+(√(R^2 −a^2 ))    .....(i)  or     ((Aa^2 )/R)=1+(√(1−((a/R))^2 ))   ...(i)^∗   ∫_0 ^(  a) (z_(sphere) −z_(para) )(2πrdr)=((2πR^3 )/3)  ⇒∫_0 ^(  a) [R+(√(R^2 −r^2 ))−Ar^2 ]rdr = (R^3 /3)                                        ....(ii)  ((a^2 R)/2)−(((R^2 −a^2 )^(3/2) )/3)+(R^3 /3)−((Aa^4 )/4)=(R^3 /3)    (a/R)=x = sin (α/2)  ⇒ 6x^2 −4(1−x^2 )^(3/2) = 3x^2 (1+(√(1−x^2 )) )  ⇒ 6sin^2 (α/2)−4cos^3 (α/2)=3(sin^2 (α/2))(1+cos (α/2))  let  cos (α/2) = p  ⇒ 6(1−p^2 )−4p^3 =3(1−p^2 )(1+p)  ⇒ p^3 +3p^2 +3p+1 = 4  ⇒  (p+1)^3 =4                     p = (4)^(1/3) −1      𝛂 = 2cos^(−1) p = 2cos^(−1) ((4)^(1/3) −1)           ≈ 108.0545 .

$$\mathrm{3}{D}\:{extension}: \\ $$$${sphere}:\:\:{r}^{\mathrm{2}} +\left({z}−{R}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$${paraboloid}\::\:\:\:{z}\:=\:{Ar}^{\mathrm{2}} \\ $$$${let}\:{A}\left({a},\:{Aa}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:{a}^{\mathrm{2}} +\left({Aa}^{\mathrm{2}} −{R}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:{Aa}^{\mathrm{2}} ={R}+\sqrt{{R}^{\mathrm{2}} −{a}^{\mathrm{2}} }\:\:\:\:.....\left({i}\right) \\ $$$${or}\:\:\:\:\:\frac{{Aa}^{\mathrm{2}} }{{R}}=\mathrm{1}+\sqrt{\mathrm{1}−\left(\frac{{a}}{{R}}\right)^{\mathrm{2}} }\:\:\:...\left({i}\right)^{\ast} \\ $$$$\int_{\mathrm{0}} ^{\:\:{a}} \left({z}_{{sphere}} −{z}_{{para}} \right)\left(\mathrm{2}\pi{rdr}\right)=\frac{\mathrm{2}\pi{R}^{\mathrm{3}} }{\mathrm{3}} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\:\:{a}} \left[{R}+\sqrt{{R}^{\mathrm{2}} −{r}^{\mathrm{2}} }−{Ar}^{\mathrm{2}} \right]{rdr}\:=\:\frac{{R}^{\mathrm{3}} }{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\left({ii}\right) \\ $$$$\frac{{a}^{\mathrm{2}} {R}}{\mathrm{2}}−\frac{\left({R}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }{\mathrm{3}}+\frac{{R}^{\mathrm{3}} }{\mathrm{3}}−\frac{{Aa}^{\mathrm{4}} }{\mathrm{4}}=\frac{{R}^{\mathrm{3}} }{\mathrm{3}} \\ $$$$\:\:\frac{{a}}{{R}}={x}\:=\:\mathrm{sin}\:\frac{\alpha}{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{6}{x}^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} =\:\mathrm{3}{x}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\right) \\ $$$$\Rightarrow\:\mathrm{6sin}\:^{\mathrm{2}} \frac{\alpha}{\mathrm{2}}−\mathrm{4cos}\:^{\mathrm{3}} \frac{\alpha}{\mathrm{2}}=\mathrm{3}\left(\mathrm{sin}\:^{\mathrm{2}} \frac{\alpha}{\mathrm{2}}\right)\left(\mathrm{1}+\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right) \\ $$$${let}\:\:\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\:=\:{p} \\ $$$$\Rightarrow\:\mathrm{6}\left(\mathrm{1}−{p}^{\mathrm{2}} \right)−\mathrm{4}{p}^{\mathrm{3}} =\mathrm{3}\left(\mathrm{1}−{p}^{\mathrm{2}} \right)\left(\mathrm{1}+{p}\right) \\ $$$$\Rightarrow\:{p}^{\mathrm{3}} +\mathrm{3}{p}^{\mathrm{2}} +\mathrm{3}{p}+\mathrm{1}\:=\:\mathrm{4} \\ $$$$\Rightarrow\:\:\left({p}+\mathrm{1}\right)^{\mathrm{3}} =\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{p}}\:=\:\sqrt[{\mathrm{3}}]{\mathrm{4}}−\mathrm{1} \\ $$$$\:\:\:\:\boldsymbol{\alpha}\:=\:\mathrm{2cos}^{−\mathrm{1}} \boldsymbol{{p}}\:=\:\mathrm{2cos}^{−\mathrm{1}} \left(\sqrt[{\mathrm{3}}]{\mathrm{4}}−\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\approx\:\mathrm{108}.\mathrm{0545}\:. \\ $$

Commented by MrW3 last updated on 09/Sep/18

wow, such a clean solution! thank you  so much!

$${wow},\:{such}\:{a}\:{clean}\:{solution}!\:{thank}\:{you} \\ $$$${so}\:{much}! \\ $$

Answered by MrW3 last updated on 09/Sep/18

3D volume:  volume of sphere=((4πR^3 )/3)  volume of paraboloid=((πa^2 b)/2)=(π/2)(R sin (α/2))^2 (R+R cos (α/2))  =((πR^3 )/2)sin^2  (α/2)(1+cos (α/2))    volume of cap=πh^2 (R−(h/3))=π(R−R cos (α/2))^2 (R−((R−R cos (α/2))/3))  =(π/3)R^3 (1−cos (α/2))^2 (2+cos (α/2))    ((πR^3 )/2)sin^2  (α/2)(1+cos (α/2))+(π/3)R^3 (1−cos (α/2))^2 (2+cos (α/2))=(1/2)×((4πR^3 )/3)  3sin^2  (α/2)(1+cos (α/2))+2(1−cos (α/2))^2 (2+cos (α/2))=4  3(1−cos^2  (α/2))(1+cos (α/2))+2(1−cos (α/2))^2 (2+cos (α/2))=4  (1−cos (α/2))(cos^2  (α/2)+4 cos (α/2)+7)=4  ⇒cos (α/2)≈0.5874  ⇒α≈108.05°

$$\mathrm{3}{D}\:{volume}: \\ $$$${volume}\:{of}\:{sphere}=\frac{\mathrm{4}\pi{R}^{\mathrm{3}} }{\mathrm{3}} \\ $$$${volume}\:{of}\:{paraboloid}=\frac{\pi{a}^{\mathrm{2}} {b}}{\mathrm{2}}=\frac{\pi}{\mathrm{2}}\left({R}\:\mathrm{sin}\:\frac{\alpha}{\mathrm{2}}\right)^{\mathrm{2}} \left({R}+{R}\:\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right) \\ $$$$=\frac{\pi{R}^{\mathrm{3}} }{\mathrm{2}}\mathrm{sin}^{\mathrm{2}} \:\frac{\alpha}{\mathrm{2}}\left(\mathrm{1}+\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right) \\ $$$$ \\ $$$${volume}\:{of}\:{cap}=\pi{h}^{\mathrm{2}} \left({R}−\frac{{h}}{\mathrm{3}}\right)=\pi\left({R}−{R}\:\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right)^{\mathrm{2}} \left({R}−\frac{{R}−{R}\:\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}}{\mathrm{3}}\right) \\ $$$$=\frac{\pi}{\mathrm{3}}{R}^{\mathrm{3}} \left(\mathrm{1}−\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right)^{\mathrm{2}} \left(\mathrm{2}+\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right) \\ $$$$ \\ $$$$\frac{\pi{R}^{\mathrm{3}} }{\mathrm{2}}\mathrm{sin}^{\mathrm{2}} \:\frac{\alpha}{\mathrm{2}}\left(\mathrm{1}+\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right)+\frac{\pi}{\mathrm{3}}{R}^{\mathrm{3}} \left(\mathrm{1}−\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right)^{\mathrm{2}} \left(\mathrm{2}+\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{4}\pi{R}^{\mathrm{3}} }{\mathrm{3}} \\ $$$$\mathrm{3sin}^{\mathrm{2}} \:\frac{\alpha}{\mathrm{2}}\left(\mathrm{1}+\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right)+\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right)^{\mathrm{2}} \left(\mathrm{2}+\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right)=\mathrm{4} \\ $$$$\mathrm{3}\left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\frac{\alpha}{\mathrm{2}}\right)\left(\mathrm{1}+\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right)+\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right)^{\mathrm{2}} \left(\mathrm{2}+\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right)=\mathrm{4} \\ $$$$\left(\mathrm{1}−\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right)\left(\mathrm{cos}^{\mathrm{2}} \:\frac{\alpha}{\mathrm{2}}+\mathrm{4}\:\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}+\mathrm{7}\right)=\mathrm{4} \\ $$$$\Rightarrow\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\approx\mathrm{0}.\mathrm{5874} \\ $$$$\Rightarrow\alpha\approx\mathrm{108}.\mathrm{05}° \\ $$

Commented by ajfour last updated on 09/Sep/18

yes sir. Thanks.

$${yes}\:{sir}.\:{Thanks}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com