All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 43322 by Raj Singh last updated on 09/Sep/18
Commented by maxmathsup by imad last updated on 11/Sep/18
letA=∫dx(x+1)2(x2+1)letdecomposeF(x)=1(x+1)2(x2+1)F(x)=ax+1+b(x+1)2+cx+dx2+1b=limx→−1(x+1)2F(x)=12limx→+∞xF(x)=0=a+c⇒c=−12⇒F(x)=ax+1+12(x+1)2+−12x+dx2+1F(o)=1=a+12+d⇒a+d=12F(2)=145=a3+118+d−15⇒1=15a+4518+9d−9⇒1=15a+52+9d−9⇒15a+9d=10−52=152⇒15a+9(12−a)=152⇒6a=152−92=3⇒a=12⇒d=0⇒F(x)=12(x+1)+12(x+1)2−x2(1+x2)⇒A=∫F(x)dx=12ln∣x+1∣−12(x+1)−14ln(1+x2)+c.
Answered by tanmay.chaudhury50@gmail.com last updated on 09/Sep/18
2)∫dx(x+1)2(x2+1)∫a(x+1)dx+∫b(x+1)2dx+∫cx+dx2+1dxnowcalculatingabcandd1(x+1)2(x2+1)=ax+1+b(x+1)2+cx+dx2+11=a(x+1)(x2+1)+b(x2+1)+(cx+d)(x+1)21=a(x3+x2+x+1)+b(x2+1)+(cx+d)(x2+2x+1)1=a(x3+x2+x+1)+b(x2+1)+(cx3+2cx2+cx+dx2+2dx+d)1=x3(a+c)+x2(a+b+2c+d)+x(a+c+2d)+(a+b+d)a+c==0a+b+2c+d=0a+c+2d=0a+b+d=1a+c+d=00+d=0d=0a+b=1a+b+2c+d=01+2c+0=0c=−12a+c=0a=−ca=12a=12a+b=1b=12c=−12d=0∫ax+1dx+∫b(x+1)2+∫cxx2+1dx12∫dxx+1+12∫dx(x+1)2+−12∫dxx2+112ln(x+1)+12×(x+1)−1−1−12tan−1(x)+c12ln(x+1)−12(x+1)−12tan−1(x)+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com