Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 43350 by peter frank last updated on 10/Sep/18

Commented by maxmathsup by imad last updated on 10/Sep/18

let  S (x)=x +2x^2  +3x^3  +...nx^n  ⇒ ((S(x))/x)=1+2x +3x^2  +....nx^(n−1)  but  1+x +x^2  +...+x^n  =((x^(n+1) −1)/(x−1)) if x≠1 let derivate ⇒  1+2x +3x^2  =(d/dx){ ((x^(n+1) −1)/(x−1))} =((nx^(n+1)  −(n+1)x^n  +1)/((x−1)^2 )) ⇒  S(x) = (x/((x−1)^2 )){ n x^(n+1)  −(n+1)x^n  +1}  x=(1/2) and n=14 ⇒S((1/2))= (1/(2.(1/4))){ 14 ×(1/2^(15) ) −15 ×(1/2^(14) ) +1}  =2{ ((14)/2^(15) ) −((15)/2^(14) ) +1} =((14)/2^(14) ) −((15)/2^(13) ) +2  <2 also we can provethat S((1/2))>1,999.

$${let}\:\:{S}\:\left({x}\right)={x}\:+\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{3}{x}^{\mathrm{3}} \:+...{nx}^{{n}} \:\Rightarrow\:\frac{{S}\left({x}\right)}{{x}}=\mathrm{1}+\mathrm{2}{x}\:+\mathrm{3}{x}^{\mathrm{2}} \:+....{nx}^{{n}−\mathrm{1}} \:{but} \\ $$$$\mathrm{1}+{x}\:+{x}^{\mathrm{2}} \:+...+{x}^{{n}} \:=\frac{{x}^{{n}+\mathrm{1}} −\mathrm{1}}{{x}−\mathrm{1}}\:{if}\:{x}\neq\mathrm{1}\:{let}\:{derivate}\:\Rightarrow \\ $$$$\mathrm{1}+\mathrm{2}{x}\:+\mathrm{3}{x}^{\mathrm{2}} \:=\frac{{d}}{{dx}}\left\{\:\frac{{x}^{{n}+\mathrm{1}} −\mathrm{1}}{{x}−\mathrm{1}}\right\}\:=\frac{{nx}^{{n}+\mathrm{1}} \:−\left({n}+\mathrm{1}\right){x}^{{n}} \:+\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$${S}\left({x}\right)\:=\:\frac{{x}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\left\{\:{n}\:{x}^{{n}+\mathrm{1}} \:−\left({n}+\mathrm{1}\right){x}^{{n}} \:+\mathrm{1}\right\} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}}\:{and}\:{n}=\mathrm{14}\:\Rightarrow{S}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\:\frac{\mathrm{1}}{\mathrm{2}.\frac{\mathrm{1}}{\mathrm{4}}}\left\{\:\mathrm{14}\:×\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{15}} }\:−\mathrm{15}\:×\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{14}} }\:+\mathrm{1}\right\} \\ $$$$=\mathrm{2}\left\{\:\frac{\mathrm{14}}{\mathrm{2}^{\mathrm{15}} }\:−\frac{\mathrm{15}}{\mathrm{2}^{\mathrm{14}} }\:+\mathrm{1}\right\}\:=\frac{\mathrm{14}}{\mathrm{2}^{\mathrm{14}} }\:−\frac{\mathrm{15}}{\mathrm{2}^{\mathrm{13}} }\:+\mathrm{2}\:\:<\mathrm{2}\:{also}\:{we}\:{can}\:{provethat}\:{S}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)>\mathrm{1},\mathrm{999}. \\ $$

Commented by peter frank last updated on 10/Sep/18

thanks

$${thanks}\: \\ $$$$ \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 10/Sep/18

s=x+2x^2 +3x^3 +4x^4 +....+nx^n   sx=       x^2 +2x^3 +3x^4 +...+(n−1)x^n +nx^(n+1)    substructing  s(1−x)=x+x^2 +x^3 +...+x^n −nx^(n+1)   s(1−x)=x(((1−x^n )/(1−x)))−nx^(n+1)   s=x{((1−x^n )/((1−x)^2 ))}−((nx^(n+1) )/(1−x))  when x=(1/2)  s→(1/2){(1/((1−(1/2))^2 ))} _ at x=(1/2)  s→(1/2)×4  when x=(1/2)   s→2

$${s}={x}+\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}{x}^{\mathrm{3}} +\mathrm{4}{x}^{\mathrm{4}} +....+{nx}^{{n}} \\ $$$${sx}=\:\:\:\:\:\:\:{x}^{\mathrm{2}} +\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{4}} +...+\left({n}−\mathrm{1}\right){x}^{{n}} +{nx}^{{n}+\mathrm{1}} \: \\ $$$${substructing} \\ $$$${s}\left(\mathrm{1}−{x}\right)={x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +...+{x}^{{n}} −{nx}^{{n}+\mathrm{1}} \\ $$$${s}\left(\mathrm{1}−{x}\right)={x}\left(\frac{\mathrm{1}−{x}^{{n}} }{\mathrm{1}−{x}}\right)−{nx}^{{n}+\mathrm{1}} \\ $$$${s}={x}\left\{\frac{\mathrm{1}−{x}^{{n}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }\right\}−\frac{{nx}^{{n}+\mathrm{1}} }{\mathrm{1}−{x}} \\ $$$${when}\:{x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${s}\rightarrow\frac{\mathrm{1}}{\mathrm{2}}\left\{\frac{\mathrm{1}}{\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }\right\}\:_{} {at}\:{x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${s}\rightarrow\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{4} \\ $$$${when}\:{x}=\frac{\mathrm{1}}{\mathrm{2}}\:\:\:{s}\rightarrow\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com