Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 43360 by ajfour last updated on 10/Sep/18

Commented by ajfour last updated on 10/Sep/18

Find R in terms of a,b,c.

$${Find}\:\boldsymbol{{R}}\:{in}\:{terms}\:{of}\:\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}}. \\ $$

Commented by ajfour last updated on 10/Sep/18

Commented by ajfour last updated on 10/Sep/18

please help..

$${please}\:{help}.. \\ $$

Commented by MJS last updated on 10/Sep/18

same as question 37209

$$\mathrm{same}\:\mathrm{as}\:\mathrm{question}\:\mathrm{37209} \\ $$

Commented by ajfour last updated on 10/Sep/18

Thanks again Sir, the solution  there is not legible, plus pretty  lengthy it is. I have not understood  solving it yet.

$${Thanks}\:{again}\:{Sir},\:{the}\:{solution} \\ $$$${there}\:{is}\:{not}\:{legible},\:{plus}\:{pretty} \\ $$$${lengthy}\:{it}\:{is}.\:{I}\:{have}\:{not}\:{understood} \\ $$$${solving}\:{it}\:{yet}.\: \\ $$

Commented by MJS last updated on 10/Sep/18

start with A= ((0),(0) )     B= ((0),((a+b)) )  then calculate C= ((x),(y) )  ∣AC∣^2 =(a+c)^2   ∣BC∣^2 =(b+c)^2   this can be solved for x and y  we get 2 solutions, one with x<0, the other  with x>0    now it depends on c  (1) if c is very small, the “circumcircle” touches  the three circles from outside  (2) there′s exactly one value of c so that the  “circumcircle” is a straight line = the common  tangent to the three circles  (3) if c is greater than this we get a “usual”  commoncircle    we can find all circles touching circles a&b  we need the circle d with exactly one common  point with circle c    (1) circles touching circles a&b from outside  with center D= ((x),(y) )  ∣AD∣^2 =(a+d)^2   ∣BD∣^2 =(b+d)^2     (2) common tangent to circles a&b    (3) circumcircles of circles a&b  with center D= ((x),(y) )  ∣AD∣^2 =(d−a)^2   ∣BD∣^2 =(d−b)^2     these equations are getting longer from step  to step but that′s how I solved it

$$\mathrm{start}\:\mathrm{with}\:{A}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\:\:\:\:{B}=\begin{pmatrix}{\mathrm{0}}\\{{a}+{b}}\end{pmatrix} \\ $$$$\mathrm{then}\:\mathrm{calculate}\:{C}=\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix} \\ $$$$\mid{AC}\mid^{\mathrm{2}} =\left({a}+{c}\right)^{\mathrm{2}} \\ $$$$\mid{BC}\mid^{\mathrm{2}} =\left({b}+{c}\right)^{\mathrm{2}} \\ $$$$\mathrm{this}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{for}\:{x}\:\mathrm{and}\:{y} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{2}\:\mathrm{solutions},\:\mathrm{one}\:\mathrm{with}\:{x}<\mathrm{0},\:\mathrm{the}\:\mathrm{other} \\ $$$$\mathrm{with}\:{x}>\mathrm{0} \\ $$$$ \\ $$$$\mathrm{now}\:\mathrm{it}\:\mathrm{depends}\:\mathrm{on}\:{c} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{if}\:{c}\:\mathrm{is}\:\mathrm{very}\:\mathrm{small},\:\mathrm{the}\:``\mathrm{circumcircle}''\:\mathrm{touches} \\ $$$$\mathrm{the}\:\mathrm{three}\:\mathrm{circles}\:\mathrm{from}\:\mathrm{outside} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{there}'\mathrm{s}\:\mathrm{exactly}\:\mathrm{one}\:\mathrm{value}\:\mathrm{of}\:{c}\:\mathrm{so}\:\mathrm{that}\:\mathrm{the} \\ $$$$``\mathrm{circumcircle}''\:\mathrm{is}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:=\:\mathrm{the}\:\mathrm{common} \\ $$$$\mathrm{tangent}\:\mathrm{to}\:\mathrm{the}\:\mathrm{three}\:\mathrm{circles} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{if}\:{c}\:\mathrm{is}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{this}\:\mathrm{we}\:\mathrm{get}\:\mathrm{a}\:``\mathrm{usual}'' \\ $$$$\mathrm{commoncircle} \\ $$$$ \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{find}\:\mathrm{all}\:\mathrm{circles}\:\mathrm{touching}\:\mathrm{circles}\:\mathrm{a\&b} \\ $$$$\mathrm{we}\:\mathrm{need}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{d}\:\mathrm{with}\:\mathrm{exactly}\:\mathrm{one}\:\mathrm{common} \\ $$$$\mathrm{point}\:\mathrm{with}\:\mathrm{circle}\:\mathrm{c} \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:\mathrm{circles}\:\mathrm{touching}\:\mathrm{circles}\:\mathrm{a\&b}\:\mathrm{from}\:\mathrm{outside} \\ $$$$\mathrm{with}\:\mathrm{center}\:{D}=\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix} \\ $$$$\mid{AD}\mid^{\mathrm{2}} =\left({a}+{d}\right)^{\mathrm{2}} \\ $$$$\mid{BD}\mid^{\mathrm{2}} =\left({b}+{d}\right)^{\mathrm{2}} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\mathrm{common}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{circles}\:\mathrm{a\&b} \\ $$$$ \\ $$$$\left(\mathrm{3}\right)\:\mathrm{circumcircles}\:\mathrm{of}\:\mathrm{circles}\:\mathrm{a\&b} \\ $$$$\mathrm{with}\:\mathrm{center}\:{D}=\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix} \\ $$$$\mid{AD}\mid^{\mathrm{2}} =\left({d}−{a}\right)^{\mathrm{2}} \\ $$$$\mid{BD}\mid^{\mathrm{2}} =\left({d}−{b}\right)^{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{these}\:\mathrm{equations}\:\mathrm{are}\:\mathrm{getting}\:\mathrm{longer}\:\mathrm{from}\:\mathrm{step} \\ $$$$\mathrm{to}\:\mathrm{step}\:\mathrm{but}\:\mathrm{that}'\mathrm{s}\:\mathrm{how}\:\mathrm{I}\:\mathrm{solved}\:\mathrm{it} \\ $$

Commented by MJS last updated on 10/Sep/18

you mean it′s technically not legible or it′s  because I didn′t post the works, only the  results?

$$\mathrm{you}\:\mathrm{mean}\:\mathrm{it}'\mathrm{s}\:\mathrm{technically}\:\mathrm{not}\:\mathrm{legible}\:\mathrm{or}\:\mathrm{it}'\mathrm{s} \\ $$$$\mathrm{because}\:\mathrm{I}\:\mathrm{didn}'\mathrm{t}\:\mathrm{post}\:\mathrm{the}\:\mathrm{works},\:\mathrm{only}\:\mathrm{the} \\ $$$$\mathrm{results}? \\ $$

Commented by ajfour last updated on 11/Sep/18

Centre  of circles :    A(0,−R+a)     B[(a+b)cos θ, −R+a+(a+b)sin θ ]    C[(a+c)cos φ, −R+a+(a+c)sin φ ]    (a+b)^2 cos^2 θ+[−R+a+(a+b)sin θ]^2                               = (R−b)^2        ...(i)  (a+c)^2 cos^2 φ+[−R+a+(a+c)sin φ]^2                               = (R−c)^2       ...(ii)  [(a+b)cos θ−(a+c)cos φ]^2    +[(a+b)sin θ−(a+c)sin φ]^2  =(b+c)^2                                         ....(iii)  ⇒ (a+b)^2 −2(R−a)(a+b)sin θ+(R−a)^2                                          = (R−b)^2   ⇒ sin 𝛉 = (((a+b)^2 +(R−a)^2 −(R−b)^2 )/(2(R−a)(a+b)))     sin 𝛗 = (((a+c)^2 +(R−a)^2 −(R−c)^2 )/(2(R−a)(a+c)))  ⇒  sin θ = ((a(a+b)−R(a−b))/(R(a+b)−a(a+b)))  ⇒  sin φ = ((a(a+c)−R(a−c))/(R(a+c)−a(a+c)))  ⇒  sin θ = (((a/R)−((a−b)/(a+b)))/(1−(a/R))) = ((x−p)/(1−x))       sin φ = (((a/R)−((a−c)/(a+c)))/(1−(a/R))) = ((x−q)/(1−x))  &     Eq. (iii) again    (a+b)^2 +(a+c)^2 −(b+c)^2           = 2(a+b)(a+c)cos (𝛉−𝛗)  ⇒ (b−c)^2 −(b+c)^2      =− 2(a+b)(a+c)[1−cos (θ−φ)]  ⇒ 1−cos (θ−φ)=((2bc)/((a+b)(a+c)))  .....

$${Centre}\:\:{of}\:{circles}\:: \\ $$$$\:\:{A}\left(\mathrm{0},−{R}+{a}\right)\: \\ $$$$\:\:{B}\left[\left({a}+{b}\right)\mathrm{cos}\:\theta,\:−{R}+{a}+\left({a}+{b}\right)\mathrm{sin}\:\theta\:\right] \\ $$$$\:\:{C}\left[\left({a}+{c}\right)\mathrm{cos}\:\phi,\:−{R}+{a}+\left({a}+{c}\right)\mathrm{sin}\:\phi\:\right] \\ $$$$ \\ $$$$\left({a}+{b}\right)^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta+\left[−{R}+{a}+\left({a}+{b}\right)\mathrm{sin}\:\theta\right]^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left({R}−{b}\right)^{\mathrm{2}} \:\:\:\:\:\:\:...\left({i}\right) \\ $$$$\left({a}+{c}\right)^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \phi+\left[−{R}+{a}+\left({a}+{c}\right)\mathrm{sin}\:\phi\right]^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left({R}−{c}\right)^{\mathrm{2}} \:\:\:\:\:\:...\left({ii}\right) \\ $$$$\left[\left({a}+{b}\right)\mathrm{cos}\:\theta−\left({a}+{c}\right)\mathrm{cos}\:\phi\right]^{\mathrm{2}} \: \\ $$$$+\left[\left({a}+{b}\right)\mathrm{sin}\:\theta−\left({a}+{c}\right)\mathrm{sin}\:\phi\right]^{\mathrm{2}} \:=\left({b}+{c}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\left({iii}\right) \\ $$$$\Rightarrow\:\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}\left({R}−{a}\right)\left({a}+{b}\right)\mathrm{sin}\:\theta+\left({R}−{a}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left({R}−{b}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{sin}\:\boldsymbol{\theta}\:=\:\frac{\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)^{\mathrm{2}} +\left(\boldsymbol{{R}}−\boldsymbol{{a}}\right)^{\mathrm{2}} −\left(\boldsymbol{{R}}−\boldsymbol{{b}}\right)^{\mathrm{2}} }{\mathrm{2}\left(\boldsymbol{{R}}−\boldsymbol{{a}}\right)\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)} \\ $$$$\:\:\:\mathrm{sin}\:\boldsymbol{\phi}\:=\:\frac{\left(\boldsymbol{{a}}+\boldsymbol{{c}}\right)^{\mathrm{2}} +\left(\boldsymbol{{R}}−\boldsymbol{{a}}\right)^{\mathrm{2}} −\left(\boldsymbol{{R}}−\boldsymbol{{c}}\right)^{\mathrm{2}} }{\mathrm{2}\left(\boldsymbol{{R}}−\boldsymbol{{a}}\right)\left(\boldsymbol{{a}}+\boldsymbol{{c}}\right)} \\ $$$$\Rightarrow\:\:\mathrm{sin}\:\theta\:=\:\frac{{a}\left({a}+{b}\right)−{R}\left({a}−{b}\right)}{{R}\left({a}+{b}\right)−{a}\left({a}+{b}\right)} \\ $$$$\Rightarrow\:\:\mathrm{sin}\:\phi\:=\:\frac{{a}\left({a}+{c}\right)−{R}\left({a}−{c}\right)}{{R}\left({a}+{c}\right)−{a}\left({a}+{c}\right)} \\ $$$$\Rightarrow\:\:\mathrm{sin}\:\theta\:=\:\frac{\frac{{a}}{{R}}−\frac{{a}−{b}}{{a}+{b}}}{\mathrm{1}−\frac{{a}}{{R}}}\:=\:\frac{{x}−{p}}{\mathrm{1}−{x}} \\ $$$$\:\:\:\:\:\mathrm{sin}\:\phi\:=\:\frac{\frac{{a}}{{R}}−\frac{{a}−{c}}{{a}+{c}}}{\mathrm{1}−\frac{{a}}{{R}}}\:=\:\frac{{x}−{q}}{\mathrm{1}−{x}} \\ $$$$\&\:\:\: \\ $$$$\boldsymbol{{Eq}}.\:\left(\boldsymbol{{iii}}\right)\:{again} \\ $$$$\:\:\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)^{\mathrm{2}} +\left(\boldsymbol{{a}}+\boldsymbol{{c}}\right)^{\mathrm{2}} −\left(\boldsymbol{{b}}+\boldsymbol{{c}}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:=\:\mathrm{2}\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)\left(\boldsymbol{{a}}+\boldsymbol{{c}}\right)\mathrm{cos}\:\left(\boldsymbol{\theta}−\boldsymbol{\phi}\right) \\ $$$$\Rightarrow\:\left({b}−{c}\right)^{\mathrm{2}} −\left({b}+{c}\right)^{\mathrm{2}} \\ $$$$\:\:\:=−\:\mathrm{2}\left({a}+{b}\right)\left({a}+{c}\right)\left[\mathrm{1}−\mathrm{cos}\:\left(\theta−\phi\right)\right] \\ $$$$\Rightarrow\:\mathrm{1}−\mathrm{cos}\:\left(\theta−\phi\right)=\frac{\mathrm{2}{bc}}{\left({a}+{b}\right)\left({a}+{c}\right)} \\ $$$$..... \\ $$

Commented by ajfour last updated on 10/Sep/18

will need to download and take  printouts (as i have a small screen phone).

$${will}\:{need}\:{to}\:{download}\:{and}\:{take} \\ $$$${printouts}\:\left({as}\:{i}\:{have}\:{a}\:{small}\:{screen}\:{phone}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com