Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43386 by ajfour last updated on 10/Sep/18

Commented by ajfour last updated on 10/Sep/18

If the two differently shaded  areas are equal, find slope m of  line, in terms of a.

$${If}\:{the}\:{two}\:{differently}\:{shaded} \\ $$$${areas}\:{are}\:{equal},\:{find}\:{slope}\:\boldsymbol{{m}}\:{of} \\ $$$${line},\:{in}\:{terms}\:{of}\:\boldsymbol{{a}}. \\ $$

Commented by Tawa1 last updated on 10/Sep/18

Sir, please how did you draw the smoth curve using lekh diagram ?

$$\mathrm{Sir},\:\mathrm{please}\:\mathrm{how}\:\mathrm{did}\:\mathrm{you}\:\mathrm{draw}\:\mathrm{the}\:\mathrm{smoth}\:\mathrm{curve}\:\mathrm{using}\:\mathrm{lekh}\:\mathrm{diagram}\:? \\ $$

Commented by ajfour last updated on 10/Sep/18

quickly moved finger like a  parabola (one branch long, other  short), (lekh recognised it),  copied it , flipped the copy  verical then horizontal and  joined the branch ends of   original and copied one, then  grouped them, then resized it.

$${quickly}\:{moved}\:{finger}\:{like}\:{a} \\ $$$${parabola}\:\left({one}\:{branch}\:{long},\:{other}\right. \\ $$$$\left.{short}\right),\:\left({lekh}\:{recognised}\:{it}\right), \\ $$$${copied}\:{it}\:,\:{flipped}\:{the}\:{copy} \\ $$$${verical}\:{then}\:{horizontal}\:{and} \\ $$$${joined}\:{the}\:{branch}\:{ends}\:{of}\: \\ $$$${original}\:{and}\:{copied}\:{one},\:{then} \\ $$$${grouped}\:{them},\:{then}\:{resized}\:{it}. \\ $$

Commented by Tawa1 last updated on 10/Sep/18

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by MrW3 last updated on 10/Sep/18

y=x(x^2 −a^2 )  (dy/dx)=3x^2 −a^2   at x=0: tan θ_0 =−a^2     ⇒r sin θ=r cos θ(r^2  cos^2  θ−a^2 )  ⇒r^2 =((tan θ+a^2 )/(cos^2  θ))  A=∫_θ_0  ^(2π) ((r^2 dθ)/2)=(1/2)∫_θ_0  ^(2π) ((tan θ+a^2 )/(cos^2  θ)) dθ  =(1/2)∫_θ_0  ^(2π) (tan θ+a^2 ) d(tan θ)  =(1/2)[((tan^2  θ)/2)+a^2 tan θ]_θ_0  ^(2π)   =(1/2)[−(a^4 /2)+a^4 ]=(a^4 /4)  let tan θ_1 =m  A_1 =(1/2)[((tan^2  θ)/2)+a^2 tan θ]_θ_1  ^(2π)   =(1/2)[−((tan^2  θ_1 )/2)−a^2 tan θ_1 ]  =−(1/2)[(m^2 /2)+a^2 m]=(A/2)=(a^4 /8)  ⇒2m^2 +4a^2 m+a^4 =0  ⇒m=((−4a^2 ±(√(16a^4 −8a^4 )))/4)  = { ((−((2+(√2))/2)a^2 )),((−((2−(√2))/2)a^2 )) :}  since ∣θ_1 ∣<∣θ_0 ∣⇒∣m∣=∣tan θ_1 ∣<∣tan θ_0 ∣=a^2   the suitable solution is:  m=−((2−(√2))/2)a^2 ≈−0.293a^2

$${y}={x}\left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} \right) \\ $$$$\frac{{dy}}{{dx}}=\mathrm{3}{x}^{\mathrm{2}} −{a}^{\mathrm{2}} \\ $$$${at}\:{x}=\mathrm{0}:\:\mathrm{tan}\:\theta_{\mathrm{0}} =−{a}^{\mathrm{2}} \\ $$$$ \\ $$$$\Rightarrow{r}\:\mathrm{sin}\:\theta={r}\:\mathrm{cos}\:\theta\left({r}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta−{a}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{r}^{\mathrm{2}} =\frac{\mathrm{tan}\:\theta+{a}^{\mathrm{2}} }{\mathrm{cos}^{\mathrm{2}} \:\theta} \\ $$$${A}=\int_{\theta_{\mathrm{0}} } ^{\mathrm{2}\pi} \frac{{r}^{\mathrm{2}} {d}\theta}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\theta_{\mathrm{0}} } ^{\mathrm{2}\pi} \frac{\mathrm{tan}\:\theta+{a}^{\mathrm{2}} }{\mathrm{cos}^{\mathrm{2}} \:\theta}\:{d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\theta_{\mathrm{0}} } ^{\mathrm{2}\pi} \left(\mathrm{tan}\:\theta+{a}^{\mathrm{2}} \right)\:{d}\left(\mathrm{tan}\:\theta\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{tan}^{\mathrm{2}} \:\theta}{\mathrm{2}}+{a}^{\mathrm{2}} \mathrm{tan}\:\theta\right]_{\theta_{\mathrm{0}} } ^{\mathrm{2}\pi} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[−\frac{{a}^{\mathrm{4}} }{\mathrm{2}}+{a}^{\mathrm{4}} \right]=\frac{{a}^{\mathrm{4}} }{\mathrm{4}} \\ $$$${let}\:\mathrm{tan}\:\theta_{\mathrm{1}} ={m} \\ $$$${A}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{tan}^{\mathrm{2}} \:\theta}{\mathrm{2}}+{a}^{\mathrm{2}} \mathrm{tan}\:\theta\right]_{\theta_{\mathrm{1}} } ^{\mathrm{2}\pi} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[−\frac{\mathrm{tan}^{\mathrm{2}} \:\theta_{\mathrm{1}} }{\mathrm{2}}−{a}^{\mathrm{2}} \mathrm{tan}\:\theta_{\mathrm{1}} \right] \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{{m}^{\mathrm{2}} }{\mathrm{2}}+{a}^{\mathrm{2}} {m}\right]=\frac{{A}}{\mathrm{2}}=\frac{{a}^{\mathrm{4}} }{\mathrm{8}} \\ $$$$\Rightarrow\mathrm{2}{m}^{\mathrm{2}} +\mathrm{4}{a}^{\mathrm{2}} {m}+{a}^{\mathrm{4}} =\mathrm{0} \\ $$$$\Rightarrow{m}=\frac{−\mathrm{4}{a}^{\mathrm{2}} \pm\sqrt{\mathrm{16}{a}^{\mathrm{4}} −\mathrm{8}{a}^{\mathrm{4}} }}{\mathrm{4}} \\ $$$$=\begin{cases}{−\frac{\mathrm{2}+\sqrt{\mathrm{2}}}{\mathrm{2}}{a}^{\mathrm{2}} }\\{−\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\mathrm{2}}{a}^{\mathrm{2}} }\end{cases} \\ $$$${since}\:\mid\theta_{\mathrm{1}} \mid<\mid\theta_{\mathrm{0}} \mid\Rightarrow\mid{m}\mid=\mid\mathrm{tan}\:\theta_{\mathrm{1}} \mid<\mid\mathrm{tan}\:\theta_{\mathrm{0}} \mid={a}^{\mathrm{2}} \\ $$$${the}\:{suitable}\:{solution}\:{is}: \\ $$$${m}=−\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\mathrm{2}}{a}^{\mathrm{2}} \approx−\mathrm{0}.\mathrm{293}{a}^{\mathrm{2}} \\ $$

Commented by ajfour last updated on 10/Sep/18

Thanks Sir, i got the same answer.

$${Thanks}\:{Sir},\:{i}\:{got}\:{the}\:{same}\:{answer}. \\ $$

Answered by ajfour last updated on 10/Sep/18

Intersection points of line  and curve:  y=mx=x(x^2 −a^2 )  ⇒ O(0,0) and P ((√(a^2 +m)) , y_P )  A=−∫_0 ^(  a) (x^3 −a^2 x)dx =−( (a^4 /4)−(a^4 /2))  ⇒ A=(a^4 /4)  ∫_0 ^(  (√(a^2 +m))) (mx−x^3 +a^2 x)dx = (a^4 /8) (=(A/2))  ⇒ ((m(a^2 +m))/2)−(((a^2 +m)^2 )/4)+((a^2 (a^2 +m))/2) = (a^4 /8)  ⇒ (a^2 +m)^2 = (a^4 /2)  ⇒  m= ((1/(√2))−1)a^2    same as  m= −(((2−(√2))/2))a^2  .  [  (dy/dx)∣_(x=0)  = −a^2  ; so we reject                   m=−(1+(1/(√2)))a^2   ].

$${Intersection}\:{points}\:{of}\:{line} \\ $$$${and}\:{curve}: \\ $$$${y}={mx}={x}\left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:{O}\left(\mathrm{0},\mathrm{0}\right)\:{and}\:{P}\:\left(\sqrt{{a}^{\mathrm{2}} +{m}}\:,\:{y}_{{P}} \right) \\ $$$${A}=−\int_{\mathrm{0}} ^{\:\:{a}} \left({x}^{\mathrm{3}} −{a}^{\mathrm{2}} {x}\right){dx}\:=−\left(\:\frac{{a}^{\mathrm{4}} }{\mathrm{4}}−\frac{{a}^{\mathrm{4}} }{\mathrm{2}}\right) \\ $$$$\Rightarrow\:{A}=\frac{{a}^{\mathrm{4}} }{\mathrm{4}} \\ $$$$\int_{\mathrm{0}} ^{\:\:\sqrt{{a}^{\mathrm{2}} +{m}}} \left({mx}−{x}^{\mathrm{3}} +{a}^{\mathrm{2}} {x}\right){dx}\:=\:\frac{{a}^{\mathrm{4}} }{\mathrm{8}}\:\left(=\frac{{A}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\:\frac{{m}\left({a}^{\mathrm{2}} +{m}\right)}{\mathrm{2}}−\frac{\left({a}^{\mathrm{2}} +{m}\right)^{\mathrm{2}} }{\mathrm{4}}+\frac{{a}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{m}\right)}{\mathrm{2}}\:=\:\frac{{a}^{\mathrm{4}} }{\mathrm{8}} \\ $$$$\Rightarrow\:\left({a}^{\mathrm{2}} +{m}\right)^{\mathrm{2}} =\:\frac{{a}^{\mathrm{4}} }{\mathrm{2}} \\ $$$$\Rightarrow\:\:\boldsymbol{{m}}=\:\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}−\mathrm{1}\right)\boldsymbol{{a}}^{\mathrm{2}} \: \\ $$$${same}\:{as}\:\:\boldsymbol{{m}}=\:−\left(\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\mathrm{2}}\right)\boldsymbol{{a}}^{\mathrm{2}} \:. \\ $$$$\left[\:\:\frac{{dy}}{{dx}}\mid_{{x}=\mathrm{0}} \:=\:−{a}^{\mathrm{2}} \:;\:{so}\:{we}\:{reject}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}=−\left(\mathrm{1}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\right){a}^{\mathrm{2}} \:\:\right]. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 10/Sep/18

solving mx=x(x^2 −a^2 )  x{m−(x^2 −a^2 }=0  x=0  x^2 −a^2 =m  x=±(√(a^2 +m))   y=mx intersect the curve at {−(√(a^2 +m))  ,0,(√(a^2 +m))  }  the curve y=x(x^2 −a^2 ) intersect x axis at{−a,0,a}  now area of dot shaded+line shaded=  ∫_0 ^a x(x^2 −a^2 )dx  =∫_0 ^a x^3 −x^ a^2   dx  =∣(x^4 /4)−(x^2 /2)×a^2 ∣_0 ^a   =(a^4 /4)−(a^4 /2)   taking the mod of value of area=(a^4 /4)  so dot shaded=(a^4 /8)  line shaded=(a^4 /8)  area line shaded  ∫_0 ^((√(a^2 +m)) ) mx dx+∫_((√(a^2 +m)) ) ^a x(x^2 −a^2 )dx  =∣((mx^2 )/2)∣_0 ^((√(a^2 +m)) )  +∣(x^4 /4)−((x^2 a^2 )/2)∣_((√(a^2 +m)) ) ^a   =((m(a^2 +m))/2)+{((a^4 /4)−(a^4 /2))−(((a^4 +2a^2 m+m^2 )/4)−((a^2 (a^2 +m))/2)}  =((a^2 m+m^2 )/2)+{(((−a^4 )/4))−(((a^4 +2a^2 m+m^2 −2a^4 −2a^2 m)/4))}   =((a^2 m+m^2 )/2)+{((−a^4 −a^4 −2a^2 m−m^2 +2a^4 +2a^2 m)/4)}  =((a^2 m+m^2 )/2)−(m^2 /4)  =((2a^2 m+2m^2 −m^2 )/4)  =((2a^2 m+m^2 )/4)  ((2a^2 m+m^2 )/4)=(a^4 /8)  4a^2 m+2m^2 −a^4 =0  2m^2 +4a^2 m−a^4 =0  m=((−4a^2 ±(√(16a^4 +8a^4 )) )/4)  =((−4a^2 ±2(√6) a^2 )/4)=((−2a^2 ±(√6) a^2 )/2)  as per figure m is negdtive  m=((−a^2 (2+(√6) ))/2)      pls check

$${solving}\:{mx}={x}\left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} \right) \\ $$$${x}\left\{{m}−\left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} \right\}=\mathrm{0}\right. \\ $$$${x}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −{a}^{\mathrm{2}} ={m} \\ $$$${x}=\pm\sqrt{{a}^{\mathrm{2}} +{m}}\: \\ $$$${y}={mx}\:{intersect}\:{the}\:{curve}\:{at}\:\left\{−\sqrt{{a}^{\mathrm{2}} +{m}}\:\:,\mathrm{0},\sqrt{{a}^{\mathrm{2}} +{m}}\:\:\right\} \\ $$$${the}\:{curve}\:{y}={x}\left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)\:{intersect}\:{x}\:{axis}\:{at}\left\{−{a},\mathrm{0},{a}\right\} \\ $$$${now}\:{area}\:{of}\:{dot}\:{shaded}+{line}\:{shaded}= \\ $$$$\int_{\mathrm{0}} ^{{a}} {x}\left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} \right){dx} \\ $$$$=\int_{\mathrm{0}} ^{{a}} {x}^{\mathrm{3}} −{x}^{} {a}^{\mathrm{2}} \:\:{dx} \\ $$$$=\mid\frac{{x}^{\mathrm{4}} }{\mathrm{4}}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}×{a}^{\mathrm{2}} \mid_{\mathrm{0}} ^{{a}} \\ $$$$=\frac{{a}^{\mathrm{4}} }{\mathrm{4}}−\frac{{a}^{\mathrm{4}} }{\mathrm{2}}\: \\ $$$${taking}\:{the}\:{mod}\:{of}\:{value}\:{of}\:{area}=\frac{{a}^{\mathrm{4}} }{\mathrm{4}} \\ $$$${so}\:{dot}\:{shaded}=\frac{{a}^{\mathrm{4}} }{\mathrm{8}} \\ $$$${line}\:{shaded}=\frac{{a}^{\mathrm{4}} }{\mathrm{8}} \\ $$$${area}\:{line}\:{shaded} \\ $$$$\int_{\mathrm{0}} ^{\sqrt{{a}^{\mathrm{2}} +{m}}\:} {mx}\:{dx}+\int_{\sqrt{{a}^{\mathrm{2}} +{m}}\:} ^{{a}} {x}\left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} \right){dx} \\ $$$$=\mid\frac{{mx}^{\mathrm{2}} }{\mathrm{2}}\mid_{\mathrm{0}} ^{\sqrt{{a}^{\mathrm{2}} +{m}}\:} \:+\mid\frac{{x}^{\mathrm{4}} }{\mathrm{4}}−\frac{{x}^{\mathrm{2}} {a}^{\mathrm{2}} }{\mathrm{2}}\mid_{\sqrt{{a}^{\mathrm{2}} +{m}}\:} ^{{a}} \\ $$$$=\frac{{m}\left({a}^{\mathrm{2}} +{m}\right)}{\mathrm{2}}+\left\{\left(\frac{{a}^{\mathrm{4}} }{\mathrm{4}}−\frac{{a}^{\mathrm{4}} }{\mathrm{2}}\right)−\left(\frac{{a}^{\mathrm{4}} +\mathrm{2}{a}^{\mathrm{2}} {m}+{m}^{\mathrm{2}} }{\mathrm{4}}−\frac{{a}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{m}\right)}{\mathrm{2}}\right\}\right. \\ $$$$=\frac{{a}^{\mathrm{2}} {m}+{m}^{\mathrm{2}} }{\mathrm{2}}+\left\{\left(\frac{−{a}^{\mathrm{4}} }{\mathrm{4}}\right)−\left(\frac{{a}^{\mathrm{4}} +\mathrm{2}{a}^{\mathrm{2}} {m}+{m}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{4}} −\mathrm{2}{a}^{\mathrm{2}} {m}}{\mathrm{4}}\right)\right\}\: \\ $$$$=\frac{{a}^{\mathrm{2}} {m}+{m}^{\mathrm{2}} }{\mathrm{2}}+\left\{\frac{−{a}^{\mathrm{4}} −{a}^{\mathrm{4}} −\mathrm{2}{a}^{\mathrm{2}} {m}−{m}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{4}} +\mathrm{2}{a}^{\mathrm{2}} {m}}{\mathrm{4}}\right\} \\ $$$$=\frac{{a}^{\mathrm{2}} {m}+{m}^{\mathrm{2}} }{\mathrm{2}}−\frac{{m}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$=\frac{\mathrm{2}{a}^{\mathrm{2}} {m}+\mathrm{2}{m}^{\mathrm{2}} −{m}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$=\frac{\mathrm{2}{a}^{\mathrm{2}} {m}+{m}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\frac{\mathrm{2}{a}^{\mathrm{2}} {m}+{m}^{\mathrm{2}} }{\mathrm{4}}=\frac{{a}^{\mathrm{4}} }{\mathrm{8}} \\ $$$$\mathrm{4}{a}^{\mathrm{2}} {m}+\mathrm{2}{m}^{\mathrm{2}} −{a}^{\mathrm{4}} =\mathrm{0} \\ $$$$\mathrm{2}{m}^{\mathrm{2}} +\mathrm{4}{a}^{\mathrm{2}} {m}−{a}^{\mathrm{4}} =\mathrm{0} \\ $$$${m}=\frac{−\mathrm{4}{a}^{\mathrm{2}} \pm\sqrt{\mathrm{16}{a}^{\mathrm{4}} +\mathrm{8}{a}^{\mathrm{4}} }\:}{\mathrm{4}} \\ $$$$=\frac{−\mathrm{4}{a}^{\mathrm{2}} \pm\mathrm{2}\sqrt{\mathrm{6}}\:{a}^{\mathrm{2}} }{\mathrm{4}}=\frac{−\mathrm{2}{a}^{\mathrm{2}} \pm\sqrt{\mathrm{6}}\:{a}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${as}\:{per}\:{figure}\:{m}\:{is}\:{negdtive} \\ $$$${m}=\frac{−{a}^{\mathrm{2}} \left(\mathrm{2}+\sqrt{\mathrm{6}}\:\right)}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$${pls}\:{check} \\ $$

Commented by ajfour last updated on 10/Sep/18

please check, some little error, Sir.

$${please}\:{check},\:{some}\:{little}\:{error},\:{Sir}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 10/Sep/18

i have done  ∫_0 ^((√(a^2 +m)) ) mx+∫_((√(a^2 +m)) ) ^a x(x^2 −a^2 )dx to find the line shaded  area  sum of the value of this two intregal=(a^4 /8)    but you have done  ∫_0 ^((√(a^2 +m)) ) mx−x(x^2 −a^2 ) dx=(a^4 /8)  pls say which area belongs to this intregal

$${i}\:{have}\:{done} \\ $$$$\int_{\mathrm{0}} ^{\sqrt{{a}^{\mathrm{2}} +{m}}\:} {mx}+\int_{\sqrt{{a}^{\mathrm{2}} +{m}}\:} ^{{a}} {x}\left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} \right){dx}\:{to}\:{find}\:{the}\:{line}\:{shaded} \\ $$$${area} \\ $$$${sum}\:{of}\:{the}\:{value}\:{of}\:{this}\:{two}\:{intregal}=\frac{{a}^{\mathrm{4}} }{\mathrm{8}} \\ $$$$ \\ $$$${but}\:{you}\:{have}\:{done} \\ $$$$\int_{\mathrm{0}} ^{\sqrt{{a}^{\mathrm{2}} +{m}}\:} {mx}−{x}\left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)\:{dx}=\frac{{a}^{\mathrm{4}} }{\mathrm{8}} \\ $$$${pls}\:{say}\:{which}\:{area}\:{belongs}\:{to}\:{this}\:{intregal} \\ $$

Commented by ajfour last updated on 10/Sep/18

the dot shaded area is equal to  what i have integrated.

$${the}\:{dot}\:{shaded}\:{area}\:{is}\:{equal}\:{to} \\ $$$${what}\:{i}\:{have}\:{integrated}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 10/Sep/18

i do not agree...∫_0 ^(√(a^2 +m)) mx dx is the area of triangle  formed by y=mx and x axis  and st line x=(√(a^2 +m))   ∫_0 ^((√(a^2 +m)) ) x(x^2 −a^2 ) dx  is the area formed by x axis and curve x(x^2 −a^2 ) and st  line x=(√(a^2 +m))[

$${i}\:{do}\:{not}\:{agree}...\int_{\mathrm{0}} ^{\sqrt{{a}^{\mathrm{2}} +{m}}} {mx}\:{dx}\:{is}\:{the}\:{area}\:{of}\:{triangle} \\ $$$${formed}\:{by}\:{y}={mx}\:{and}\:{x}\:{axis}\:\:{and}\:{st}\:{line}\:{x}=\sqrt{{a}^{\mathrm{2}} +{m}}\: \\ $$$$\int_{\mathrm{0}} ^{\sqrt{{a}^{\mathrm{2}} +{m}}\:} {x}\left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)\:{dx} \\ $$$${is}\:{the}\:{area}\:{formed}\:{by}\:{x}\:{axis}\:{and}\:{curve}\:{x}\left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)\:{and}\:{st} \\ $$$${line}\:{x}=\sqrt{{a}^{\mathrm{2}} +{m}}\left[\:\right. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 10/Sep/18

pls find line shaded area...

$${pls}\:{find}\:{line}\:{shaded}\:{area}... \\ $$

Commented by ajfour last updated on 10/Sep/18

how will you find area of  (x−h)^2 +(y−k)^2 = r^2   , Sir ?

$${how}\:{will}\:{you}\:{find}\:{area}\:{of} \\ $$$$\left({x}−{h}\right)^{\mathrm{2}} +\left({y}−{k}\right)^{\mathrm{2}} =\:{r}^{\mathrm{2}} \:\:,\:{Sir}\:? \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 10/Sep/18

you find error in my calculation...locate it

$${you}\:{find}\:{error}\:{in}\:{my}\:{calculation}...{locate}\:{it}\: \\ $$

Commented by ajfour last updated on 10/Sep/18

∫_0 ^(  (√(a^2 +m))) mxdx+∫_(√(a^2 +m)) ^(  a) x(x^2 −a^2 )dx=−(a^4 /8)  (area is below x-axis so −ve)  then you shall get     4a^2 m+2m^2 +a^4 =0  ⇒  2m^2 +4a^2 m+a^4 =0     m= ((−4a^2 ±(√(16a^4 −8a^4 )))/4)     or  m= (−1+(1/(√2)))a^2       (not accepting the other root).

$$\int_{\mathrm{0}} ^{\:\:\sqrt{{a}^{\mathrm{2}} +{m}}} {mxdx}+\int_{\sqrt{{a}^{\mathrm{2}} +{m}}} ^{\:\:{a}} {x}\left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} \right){dx}=−\frac{{a}^{\mathrm{4}} }{\mathrm{8}} \\ $$$$\left({area}\:{is}\:{below}\:{x}-{axis}\:{so}\:−{ve}\right) \\ $$$${then}\:{you}\:{shall}\:{get} \\ $$$$\:\:\:\mathrm{4}{a}^{\mathrm{2}} {m}+\mathrm{2}{m}^{\mathrm{2}} +{a}^{\mathrm{4}} =\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{2}{m}^{\mathrm{2}} +\mathrm{4}{a}^{\mathrm{2}} {m}+{a}^{\mathrm{4}} =\mathrm{0} \\ $$$$\:\:\:{m}=\:\frac{−\mathrm{4}{a}^{\mathrm{2}} \pm\sqrt{\mathrm{16}{a}^{\mathrm{4}} −\mathrm{8}{a}^{\mathrm{4}} }}{\mathrm{4}} \\ $$$$\:\:\:{or}\:\:{m}=\:\left(−\mathrm{1}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\right){a}^{\mathrm{2}} \:\:\: \\ $$$$\:\left({not}\:{accepting}\:{the}\:{other}\:{root}\right). \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 11/Sep/18

ok thank you...

$${ok}\:{thank}\:{you}... \\ $$

Answered by MJS last updated on 10/Sep/18

p: y=x^3 −a^2 x  l: y=mx  p∩l  x^3 −(m+a^2 )x=0 ⇒ x=(√(m+a^2 ))  dotted area: D=∫_0 ^(√(m+a^2 )) (x^3 −a^2 x)dx−m∫_0 ^(√(m+a^2 )) xdx  shaded area: S=m∫_0 ^(√(m+a^2 )) xdx+∫_(√(m+a^2 )) ^a (x^3 −a^2 x)dx  D=(1/4)(m^2 −a^4 )−(1/2)m(m+a^2 )=−(1/4)(m+a^2 )^2   S=(1/2)m(m+a^2 )−(1/4)m^2 =(1/4)m(m+2a^2 )  S−D=0  m^2 +2a^2 m+(a^4 /2)=0  m=(−1+((√2)/2))a^2      [the 2^(nd)  solution doesn′t                                         give a real value for (√(m+a^2 ))]

$${p}:\:{y}={x}^{\mathrm{3}} −{a}^{\mathrm{2}} {x} \\ $$$${l}:\:{y}={mx} \\ $$$${p}\cap{l} \\ $$$${x}^{\mathrm{3}} −\left({m}+{a}^{\mathrm{2}} \right){x}=\mathrm{0}\:\Rightarrow\:{x}=\sqrt{{m}+{a}^{\mathrm{2}} } \\ $$$$\mathrm{dotted}\:\mathrm{area}:\:{D}=\underset{\mathrm{0}} {\overset{\sqrt{{m}+{a}^{\mathrm{2}} }} {\int}}\left({x}^{\mathrm{3}} −{a}^{\mathrm{2}} {x}\right){dx}−{m}\underset{\mathrm{0}} {\overset{\sqrt{{m}+{a}^{\mathrm{2}} }} {\int}}{xdx} \\ $$$$\mathrm{shaded}\:\mathrm{area}:\:{S}={m}\underset{\mathrm{0}} {\overset{\sqrt{{m}+{a}^{\mathrm{2}} }} {\int}}{xdx}+\underset{\sqrt{{m}+{a}^{\mathrm{2}} }} {\overset{{a}} {\int}}\left({x}^{\mathrm{3}} −{a}^{\mathrm{2}} {x}\right){dx} \\ $$$${D}=\frac{\mathrm{1}}{\mathrm{4}}\left({m}^{\mathrm{2}} −{a}^{\mathrm{4}} \right)−\frac{\mathrm{1}}{\mathrm{2}}{m}\left({m}+{a}^{\mathrm{2}} \right)=−\frac{\mathrm{1}}{\mathrm{4}}\left({m}+{a}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$${S}=\frac{\mathrm{1}}{\mathrm{2}}{m}\left({m}+{a}^{\mathrm{2}} \right)−\frac{\mathrm{1}}{\mathrm{4}}{m}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}{m}\left({m}+\mathrm{2}{a}^{\mathrm{2}} \right) \\ $$$${S}−{D}=\mathrm{0} \\ $$$${m}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{2}} {m}+\frac{{a}^{\mathrm{4}} }{\mathrm{2}}=\mathrm{0} \\ $$$${m}=\left(−\mathrm{1}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right){a}^{\mathrm{2}} \:\:\:\:\:\left[\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{solution}\:\mathrm{doesn}'\mathrm{t}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{give}\:\mathrm{a}\:\mathrm{real}\:\mathrm{value}\:\mathrm{for}\:\sqrt{{m}+{a}^{\mathrm{2}} }\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com