Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 43404 by peter frank last updated on 10/Sep/18

Answered by alex041103 last updated on 10/Sep/18

(d/dx)((x^2 /(16))−(y^2 /4)=1)  (x/8)−(y/2)((dy/dx))=0  ⇒(dy/dx)=(x/(4y))  for x=4sec t and y=2tan t  (dy/dx)=((4sec t)/(4×2 tan t))=(1/(2sin t))  the equation for the tangent line  is y−2tan t=(dy/dx)(t) (x−4sec t)  ⇒y−2((sin t)/(cos t))=(1/(2sin t))(x−4sec t)  2ysin t − (4/(cos t))sin^2 t=x−(4/(cos t))  2ysin t=x−(4/(cos t))(1−sin^2 t)  ⇒2 y sin t = x − 4 cos t

$$\frac{{d}}{{dx}}\left(\frac{{x}^{\mathrm{2}} }{\mathrm{16}}−\frac{{y}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{1}\right) \\ $$$$\frac{{x}}{\mathrm{8}}−\frac{{y}}{\mathrm{2}}\left(\frac{{dy}}{{dx}}\right)=\mathrm{0} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}=\frac{{x}}{\mathrm{4}{y}} \\ $$$${for}\:{x}=\mathrm{4}{sec}\:{t}\:{and}\:{y}=\mathrm{2}{tan}\:{t} \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{4}{sec}\:{t}}{\mathrm{4}×\mathrm{2}\:{tan}\:{t}}=\frac{\mathrm{1}}{\mathrm{2}{sin}\:{t}} \\ $$$${the}\:{equation}\:{for}\:{the}\:{tangent}\:{line} \\ $$$${is}\:{y}−\mathrm{2}{tan}\:{t}=\frac{{dy}}{{dx}}\left({t}\right)\:\left({x}−\mathrm{4}{sec}\:{t}\right) \\ $$$$\Rightarrow{y}−\mathrm{2}\frac{{sin}\:{t}}{{cos}\:{t}}=\frac{\mathrm{1}}{\mathrm{2}{sin}\:{t}}\left({x}−\mathrm{4}{sec}\:{t}\right) \\ $$$$\mathrm{2}{ysin}\:{t}\:−\:\frac{\mathrm{4}}{{cos}\:{t}}{sin}^{\mathrm{2}} {t}={x}−\frac{\mathrm{4}}{{cos}\:{t}} \\ $$$$\mathrm{2}{ysin}\:{t}={x}−\frac{\mathrm{4}}{{cos}\:{t}}\left(\mathrm{1}−{sin}^{\mathrm{2}} {t}\right) \\ $$$$\Rightarrow\mathrm{2}\:{y}\:{sin}\:{t}\:=\:{x}\:−\:\mathrm{4}\:{cos}\:{t} \\ $$

Commented by peter frank last updated on 10/Sep/18

    thanks very much

$$ \\ $$$$ \\ $$$${thanks}\:{very}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com