All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 43419 by Raj Singh last updated on 10/Sep/18
Commented by maxmathsup by imad last updated on 10/Sep/18
letA=∫xdx(x−1)(x2+1)2A=∫x−1+1(x−1)(x2+1)2dx=∫dxx2+1+∫dx(x−1)(x2+1)2but∫dxx2+1=arctanx+c1changemenex−1=tgive∫dx(x−1)(x2+1)2=∫dtt{(t+1)2+1}2=t+1=tanθ∫(1+tan2θ)dθ(tanθ−1){1+tan2θ}2=∫cos2θsinθcosθ−1dθ=∫cos3θsinθ−cosθdθ=∫cos3θ2cos(θ+π4)dθ=θ+π4=u∫cos3(u−π4)2cosudu=∫{cosu2+sinu2}32cosudu=14∫(cosu+sinu)3cosudu=14∫cos3u+3cos2usinu+3cosusin2u+sin3ucosudu=14∫cos2udu+34∫cosusinudu+34∫sin2udu+14∫sin3ucosudu=18∫(1+cos(2u)du+38∫sin(2u)du+38∫(1−cos(2u))du+14∫sin3ucosudu=18u+116sin(2u)−316cos(2u)+38u−316sin(2u)+14∫(1−cos2u)sinucosuduu=θ+π4=arctan(t+1)+π4....becontiued...
anotherwayfortheintegral∫dx(x−1)(x2+1)2wedecomposethefractionF(x)=1(x−1)(x2+1)2F(x)=ax−1+bx+cx2+1+dx+e(x2+1)2a=limx→1(x−1)F(x)=12limx→+∞xF(x)=0=a+b⇒b=−12⇒F(x)=12(x−1)−12x−2cx2+1+dx+e(x2+1)2wehaveF(0)=−1=−12+c+e⇒c+e=−12F(2)=12−122−2c5+2d+e25=125F(−1)=−18=−14−12−1−2c2+−d+e4wegetalinearsystemwithunknownc,d,e....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com