Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43419 by Raj Singh last updated on 10/Sep/18

Commented by maxmathsup by imad last updated on 10/Sep/18

let A = ∫  ((xdx)/((x−1)(x^2 +1)^2 ))  A = ∫  ((x−1+1)/((x−1)(x^2  +1)^2 ))dx = ∫  (dx/(x^2  +1)) + ∫    (dx/((x−1)(x^2 +1)^2 )) but  ∫  (dx/(x^2  +1)) =arctanx +c_1     changemene x −1=t give  ∫     (dx/((x−1)(x^2 +1)^2 )) = ∫   (dt/(t{ (t+1)^2 +1}^2 )) =_(t+1 =tanθ)      ∫   (((1+tan^2 θ)dθ)/((tanθ−1){1+tan^2 θ}^2 ))  = ∫     ((cos^2 θ)/(((sinθ)/(cosθ))−1)) dθ = ∫   ((cos^3 θ)/(sinθ −cosθ)) dθ = ∫  ((cos^3 θ)/((√2)cos(θ +(π/4)))) dθ  =_(θ +(π/4)=u)      ∫   ((cos^3 (u−(π/4)))/((√2)cosu)) du = ∫   (({((cosu)/(√2))+((sinu)/(√2))}^3 )/((√2)cosu)) du  = (1/4) ∫     (((cosu +sinu)^3 )/(cosu)) du  =(1/4) ∫    ((cos^3 u +3cos^2 u sinu +3cosu sin^2 u +sin^3 u)/(cosu)) du  =(1/4)  ∫  cos^2 u du  +(3/4) ∫ cosu sinu du  +(3/4) ∫ sin^2 u du +(1/4) ∫ ((sin^3 u)/(cosu)) du  =(1/8) ∫  (1+cos(2u)du +(3/8) ∫ sin(2u)du  +(3/8) ∫ (1−cos(2u))du +(1/4) ∫((sin^3 u)/(cosu))du  = (1/8) u +(1/(16))sin(2u) −(3/(16))cos(2u) +(3/8)u −(3/(16))sin(2u) +(1/4) ∫ (((1−cos^2 u)sinu)/(cosu))du  u=θ +(π/4) =arctan(t+1) +(π/4) ....be contiued...

letA=xdx(x1)(x2+1)2A=x1+1(x1)(x2+1)2dx=dxx2+1+dx(x1)(x2+1)2butdxx2+1=arctanx+c1changemenex1=tgivedx(x1)(x2+1)2=dtt{(t+1)2+1}2=t+1=tanθ(1+tan2θ)dθ(tanθ1){1+tan2θ}2=cos2θsinθcosθ1dθ=cos3θsinθcosθdθ=cos3θ2cos(θ+π4)dθ=θ+π4=ucos3(uπ4)2cosudu={cosu2+sinu2}32cosudu=14(cosu+sinu)3cosudu=14cos3u+3cos2usinu+3cosusin2u+sin3ucosudu=14cos2udu+34cosusinudu+34sin2udu+14sin3ucosudu=18(1+cos(2u)du+38sin(2u)du+38(1cos(2u))du+14sin3ucosudu=18u+116sin(2u)316cos(2u)+38u316sin(2u)+14(1cos2u)sinucosuduu=θ+π4=arctan(t+1)+π4....becontiued...

Commented by maxmathsup by imad last updated on 10/Sep/18

another way for the integral  ∫    (dx/((x−1)(x^2  +1)^2 )) we decompose the   fraction F(x) = (1/((x−1)(x^2  +1)^2 ))  F(x) =(a/(x−1)) +((bx+c)/(x^2  +1)) +((dx +e)/((x^2  +1)^2 ))  a=lim_(x→1) (x−1)F(x) =(1/2)  lim_(x→+∞) x F(x) =0 =a+b ⇒b=−(1/2)  ⇒  F(x) = (1/(2(x−1))) −(1/2)   ((x−2c)/(x^2  +1)) + ((dx+e)/((x^2  +1)^2 ))  we have  F(0) =−1 =−(1/2) +c +e ⇒c+e =−(1/2)  F(2)= (1/2) −(1/2) ((2−2c)/5) + ((2d +e)/(25)) =(1/(25))  F(−1) = −(1/8) =−(1/4) −(1/2) ((−1−2c)/2) +((−d +e)/4)  weget a linear system with unknown  c ,d,e ....

anotherwayfortheintegraldx(x1)(x2+1)2wedecomposethefractionF(x)=1(x1)(x2+1)2F(x)=ax1+bx+cx2+1+dx+e(x2+1)2a=limx1(x1)F(x)=12limx+xF(x)=0=a+bb=12F(x)=12(x1)12x2cx2+1+dx+e(x2+1)2wehaveF(0)=1=12+c+ec+e=12F(2)=121222c5+2d+e25=125F(1)=18=141212c2+d+e4wegetalinearsystemwithunknownc,d,e....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com