Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43490 by peter frank last updated on 11/Sep/18

evaluate  ∫(√(tan𝛉 dθ))

evaluatetanθdθ

Commented by maxmathsup by imad last updated on 11/Sep/18

let I =∫ (√(tanθ))dθ    changement (√(tanθ)) =x give tanθ=x^2  ⇎θ=arctan(x^2 ) ⇒  I = ∫  x  ((2x)/(1+x^4 )) dx = ∫  ((2x^2 )/(1+x^4 )) dx  let decompose F(x)=((2x^2 )/(1+x^4 ))  F(x) = ((2x^2 )/((x^2 +1)^2  −2x^2 )) =((2x^2 )/((x^2  +(√2)x +1)(x^2 −(√2)x+1)))  =((ax+b)/(x^2  +(√2)x+1)) +((cx+d)/(x^2 −(√2)x+1))  F(−x) =F(x) ⇒((−ax +b)/(x^2  −(√2)x+1)) +((−cx+d)/(x^2 +(√2)x +1)) =F(x) ⇒c=−a and b=d ⇒  F(x) = ((ax+b)/(x^2 +(√2)x +1)) +((−ax +b)/(x^2  −(√2)x +1))  F(0) =0 = 2b ⇒b=0 ⇒F(x)=((ax)/(x^2 +(√2)x+1)) −((ax)/(x^2 −(√2)x +1))  F(1) =1 =  (a/(2+(√2))) −(a/(2−(√2))) ⇒(((−2(√2))/2))a=1 ⇒a=−(1/(√2)) ⇒  F(x)= (1/(√2)){ (1/(x^2 −(√2)x +1)) −(1/(x^2  +(√2)x +1))} ⇒  I =(1/(√2)) ∫    (dx/(x^2 −(√2)x +1)) −(1/(√2)) ∫     (dx/(x^2  +(√2)x+1)) but  ∫   (dx/(x^2 −(√2)x +1)) =∫    (dx/(x^2  −(2/(√2))x  +(1/2)+(1/2))) = ∫    (dx/((x−(1/(√2)))^2  +(1/2)))  =_(x−(1/(√2)) =(u/(√2)))      ∫     (1/((1/2)(1+u^2 ))) (du/(√2)) = (√2)  ∫  (du/(1+u^2 )) =(√2)arctan(u) +c_1   =(√2)arctan(x(√2)−1) +c_1 =(√2)arctan((√(2tanθ))−1) +c_1    also we have  ∫    (dx/(x^2  +(√2)x+1)) = ∫    (dx/((x+(1/(√2)))^2  +(1/2))) =_(x+(1/(√2))=(u/(√2)))     ∫      (1/((1/2)(1+u^2 ))) (du/(√2))  =(√2)arctan((√2)x+1) =(√2)arctan((√(2tanθ))+1) ⇒  ∫ (√(tanθ))dθ = arctan((√(2tanθ))−1) −arctan((√(2tanθ))+1) +c

letI=tanθdθchangementtanθ=xgivetanθ=x2θ=arctan(x2)I=x2x1+x4dx=2x21+x4dxletdecomposeF(x)=2x21+x4F(x)=2x2(x2+1)22x2=2x2(x2+2x+1)(x22x+1)=ax+bx2+2x+1+cx+dx22x+1F(x)=F(x)ax+bx22x+1+cx+dx2+2x+1=F(x)c=aandb=dF(x)=ax+bx2+2x+1+ax+bx22x+1F(0)=0=2bb=0F(x)=axx2+2x+1axx22x+1F(1)=1=a2+2a22(222)a=1a=12F(x)=12{1x22x+11x2+2x+1}I=12dxx22x+112dxx2+2x+1butdxx22x+1=dxx222x+12+12=dx(x12)2+12=x12=u2112(1+u2)du2=2du1+u2=2arctan(u)+c1=2arctan(x21)+c1=2arctan(2tanθ1)+c1alsowehavedxx2+2x+1=dx(x+12)2+12=x+12=u2112(1+u2)du2=2arctan(2x+1)=2arctan(2tanθ+1)tanθdθ=arctan(2tanθ1)arctan(2tanθ+1)+c

Commented by peter frank last updated on 11/Sep/18

thanks

thanks

Answered by tanmay.chaudhury50@gmail.com last updated on 11/Sep/18

t^2 =tanθ  2tdt=sec^2 θ dθ  ((2t)/(1+t^4 ))dt=dθ  ∫((2t)/(1+t^4 ))×tdt  ∫((2t^2 )/(1+t^4 ))dt  ∫(2/(t^2 +(1/t^2 )))dt  ∫((1−(1/t^2 )+1+(1/t^2 ))/(t^2 +(1/t^2 )))dt  ∫((1−(1/t^2 ))/((t+(1/t))^2 −((√2) )^2 ))dt+∫((1+(1/t^2 ))/((t−(1/t))^2 +((√2) )^2 ))dt  ∫((d(t+(1/t)))/((t+(1/t))^2 −((√2) )^2 ))+∫((d(t−(1/t)))/((t−(1/t))^2 +((√2) )^2 ))  (1/(2(√2)))ln∣(((t+(1/t))−(√2) )/((t+(1/t))+(√2) ))∣+(1/(√2))tan^(−1) (((t−(1/t))/((√2) )))+c  (1/(2(√2) ))ln∣(((√(tanθ)) +(1/((√(tanθ)) ))−(√2))/((√(tanθ)) +(1/((√(tanθ)) ))+(√2)))∣+(1/((√2) ))tan^(−1) ((((√(tanθ)) −(1/((√(tanθ)) )))/((√2) )))+c

t2=tanθ2tdt=sec2θdθ2t1+t4dt=dθ2t1+t4×tdt2t21+t4dt2t2+1t2dt11t2+1+1t2t2+1t2dt11t2(t+1t)2(2)2dt+1+1t2(t1t)2+(2)2dtd(t+1t)(t+1t)2(2)2+d(t1t)(t1t)2+(2)2122ln(t+1t)2(t+1t)+2+12tan1(t1t2)+c122lntanθ+1tanθ2tanθ+1tanθ+2+12tan1(tanθ1tanθ2)+c

Commented by peter frank last updated on 11/Sep/18

thanks

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com