Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43538 by abdo.msup.com last updated on 11/Sep/18

calculate ∫∫_((x^2 /a^2 ) +(y^2 /b^2 ) ≤1) (x^2 −y^2 )dxdy whit  a>0 and b>0 .

calculatex2a2+y2b21(x2y2)dxdywhit a>0andb>0.

Commented bymaxmathsup by imad last updated on 16/Sep/18

let consider the diffeomorphism (r,θ) →(x,y)=(arcosθ,brsinθ)  I = ∫∫_(0≤r≤1 and  0≤θ≤2π) (a^2 cos^2 θ −b^2 sin^2 θ)ab r dr dθ  =a^3 b∫_0 ^1 rdr ∫_0 ^(2π) cos^2 θ dθ  −ab^3  ∫_0 ^1 rdr ∫_0 ^(2π) sin^2 θ dθ  =((a^3 b)/2)  ∫_0 ^(2π) ((1+cos(2θ))/2)dθ −((ab^3 )/2) ∫_0 ^(2π)  ((1−cos(2θ))/2) dθ  A=((π a^3 b)/2)  +((a^3 b)/4) ∫_0 ^(2π) cos(2θ)dθ −((πab^3 )/2) + ((ab^3 )/4) ∫_0 ^(2π)  cos(2θ)dθ  =((πab)/2)(a^2 −b^2 ) +0+0 ⇒A =((πab)/2){a^2  −b^2 } .

letconsiderthediffeomorphism(r,θ)(x,y)=(arcosθ,brsinθ) I=0r1and0θ2π(a2cos2θb2sin2θ)abrdrdθ =a3b01rdr02πcos2θdθab301rdr02πsin2θdθ =a3b202π1+cos(2θ)2dθab3202π1cos(2θ)2dθ A=πa3b2+a3b402πcos(2θ)dθπab32+ab3402πcos(2θ)dθ =πab2(a2b2)+0+0A=πab2{a2b2}.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com