All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 43539 by abdo.msup.com last updated on 11/Sep/18
calculate∫∫0⩽x⩽1,0⩽y⩽1(x+2y)e2x−ydxdy
Commented by maxmathsup by imad last updated on 16/Sep/18
letconsiderthediffeomorphisme(u,v)→φ(u,v)=(φ1(u,v),φ2(u,v))=(x,y)/u=x+2yandv=2x−y⇒{x+2y=u2x−y=v⇒{2x+4y=2u2x−y=v⇒{5y=2u−vx=u−2(2u−v5)⇒{y=25u−15vx=15u+25v⇒φ(u,v)=(φ1,φ2)=(x,y)=(15u+25v,25u−15v)⇒Mj(φ)=(∂φ1∂u∂φ1∂v∂φ2∂u∂φ2∂v)=(152525−15)anddetMj=−125−425=−125wehave0⩽x⩽1and0⩽2y⩽2⇒0⩽x+2y⩽3⇒0⩽u⩽30⩽2x⩽2and−1⩽−y⩽0⇒−1⩽2x−y⩽2⇒−1⩽v⩽2⇒∫∫f(x,y)dxdy=∫∫wfoφ(u,v)∣detMj(φ)∣dudv=∫∫0⩽u⩽3and−1⩽v⩽2uev125dudv=125∫03udu.∫−12evdv=125[u22]03.[ev]−12=150(9)(e2−e−1)=950{e2−1e}.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com