Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43539 by abdo.msup.com last updated on 11/Sep/18

calculate ∫∫_(0≤x≤1 ,0≤y≤1)   (x+2y)e^(2x−y) dxdy

calculate0x1,0y1(x+2y)e2xydxdy

Commented by maxmathsup by imad last updated on 16/Sep/18

let consider the diffeomorphisme (u,v) →ϕ(u,v)=(ϕ_1 (u,v),ϕ_2 (u,v))=  (x,y) /u=x+2y and v=2x−y ⇒ { ((x+2y=u)),((2x−y=v ⇒ { ((2x+4y=2u)),((2x−y=v)) :})) :}  ⇒ { ((5y=2u−v)),((x=u−2(((2u−v)/5))                 ⇒   { ((y=(2/5)u−(1/5)v)),((x=(1/5)u +(2/5)v)) :})) :}  ⇒ϕ(u,v)=(ϕ_1 ,ϕ_2 )=(x,y)=((1/5)u+(2/5)v,(2/5)u−(1/5)v)⇒  M_j (ϕ) = ((((∂ϕ_1 /∂u)              (∂ϕ_1 /∂v))),(((∂ϕ_2 /∂u)                (∂ϕ_2 /∂v))) )       =  ((( (1/5)         (2/5))),(((2/5)         −(1/5))) )  and detM_j =−(1/(25)) −(4/(25)) =−(1/(25))  we have 0≤x≤1 and 0≤2y≤2 ⇒0≤x+2y≤3 ⇒0≤u≤3   0≤2x≤2 and  −1≤−y≤0 ⇒−1≤2x−y≤ 2 ⇒−1≤v≤2 ⇒  ∫∫f(x,y)dxdy  = ∫∫_w foϕ(u,v) ∣detM_j (ϕ)∣ du dv  =∫∫_(0≤u≤3 and −1≤v≤2)  u e^v  (1/(25)) du dv =(1/(25)) ∫_0 ^3  udu  .∫_(−1) ^2  e^v dv  =(1/(25))[ (u^2 /2)]_0 ^3  .[ e^v ]_(−1) ^2   =(1/(50))(9)( e^2  −e^(−1) ) =(9/(50)){ e^2  −(1/e)} .

letconsiderthediffeomorphisme(u,v)φ(u,v)=(φ1(u,v),φ2(u,v))=(x,y)/u=x+2yandv=2xy{x+2y=u2xy=v{2x+4y=2u2xy=v{5y=2uvx=u2(2uv5){y=25u15vx=15u+25vφ(u,v)=(φ1,φ2)=(x,y)=(15u+25v,25u15v)Mj(φ)=(φ1uφ1vφ2uφ2v)=(15252515)anddetMj=125425=125wehave0x1and02y20x+2y30u302x2and1y012xy21v2f(x,y)dxdy=wfoφ(u,v)detMj(φ)dudv=0u3and1v2uev125dudv=12503udu.12evdv=125[u22]03.[ev]12=150(9)(e2e1)=950{e21e}.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com