Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 43545 by peter frank last updated on 11/Sep/18

prove that ∫  _0 ^1  ((x^2 +6)/((x^2 +4)(x^2 +9)))=(Π/(20))

provethat10x2+6(x2+4)(x2+9)=Π20

Answered by behi83417@gmail.com last updated on 12/Sep/18

I=(1/2)∫((2x^2 +12)/((x^2 +4)(x^2 +9)))dx=  =(1/2)[∫((1/(x^2 +9))+(1/(x^2 +4))−(1/5)((1/(x^2 +4))−(1/(x^2 +9)))]dx=  =(3/5)∫ (dx/(x^2 +9))+(2/5)∫ (dx/(x^2 +4))=  =(3/5).(1/3)tg^(−1) ((x/3))+(2/5).(1/2)tg^(−1) ((x/2))+c=  =(1/5)tg^(−1) (((x/3)+(x/2))/(1−(x^2 /6)))=(1/5)tg^(−1) ((5x)/(6−x^2 ))+c.  I=F(1)−F(0)=(1/5)[tg^(−1) (5/5)−0]=  =(1/5).(π/4)=(π/(20)). ■

I=122x2+12(x2+4)(x2+9)dx==12[(1x2+9+1x2+415(1x2+41x2+9)]dx==35dxx2+9+25dxx2+4==35.13tg1(x3)+25.12tg1(x2)+c==15tg1x3+x21x26=15tg15x6x2+c.I=F(1)F(0)=15[tg1550]==15.π4=π20.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com