Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 43546 by maxmathsup by imad last updated on 11/Sep/18

let S_n =Σ_(k=1) ^n    (1/(√(k^2  +n^2 )))   calculate lim_(n→+∞)   S_n

$${let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{\mathrm{1}}{\sqrt{{k}^{\mathrm{2}} \:+{n}^{\mathrm{2}} }}\:\:\:{calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:{S}_{{n}} \\ $$

Answered by behi83417@gmail.com last updated on 12/Sep/18

S_n =Σ_1 ^n (1/n).(1/(√(1+((k/n))^2 )))=∫_0 ^1  (dx/(√(1+x^2 )))=  =ln(x+(√(1+x^2 )))_0 ^1 =ln((√2)+1).

$${S}_{{n}} =\sum_{\mathrm{1}} ^{{n}} \frac{\mathrm{1}}{{n}}.\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\left(\frac{{k}}{{n}}\right)^{\mathrm{2}} }}=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}= \\ $$$$={ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)_{\mathrm{0}} ^{\mathrm{1}} ={ln}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right). \\ $$

Commented by maxmathsup by imad last updated on 12/Sep/18

cha7gement x =tanθ give ∫_0 ^1    (dx/(√(1+x^2 ))) =∫_0 ^(π/4)   ((1+tan^2 θ)/(√(1+tan^2 θ)))dθ  = ∫_0 ^(π/4)  (√(1+tan^2 θ))= ∫_0 ^(π/4)  (dθ/(cosθ)) =_(tan((θ/2))=u)    ∫_0 ^((√2)−1)    (1/((1−t^2 )/(1+t^2 ))) ((2du)/(1+u^2 ))  = ∫_0 ^((√2)−1)   {(1/(1−u)) +(1/(1+u))}du =[ln∣((1+u)/(1−u))∣]_0 ^((√2)−1)  =ln∣ ((√2)/(2−(√2)))∣  =ln((1/((√2)−1)))=ln(1+(√2))  ⇒lim_(n→+∞)  S_n =ln(1+(√2))   another way ∫_0 ^1   (dx/(√(1+x^2 ))) =[argsh(x)]_0 ^1  =[ln(x+(√(1+x^2 )))]_0 ^1  =ln(1+(√2)).

$${cha}\mathrm{7}{gement}\:{x}\:={tan}\theta\:{give}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{\mathrm{1}+{tan}^{\mathrm{2}} \theta}{\sqrt{\mathrm{1}+{tan}^{\mathrm{2}} \theta}}{d}\theta \\ $$$$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\sqrt{\mathrm{1}+{tan}^{\mathrm{2}} \theta}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{d}\theta}{{cos}\theta}\:=_{{tan}\left(\frac{\theta}{\mathrm{2}}\right)={u}} \:\:\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}−\mathrm{1}} \:\:\:\frac{\mathrm{1}}{\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$=\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}−\mathrm{1}} \:\:\left\{\frac{\mathrm{1}}{\mathrm{1}−{u}}\:+\frac{\mathrm{1}}{\mathrm{1}+{u}}\right\}{du}\:=\left[{ln}\mid\frac{\mathrm{1}+{u}}{\mathrm{1}−{u}}\mid\right]_{\mathrm{0}} ^{\sqrt{\mathrm{2}}−\mathrm{1}} \:={ln}\mid\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}−\sqrt{\mathrm{2}}}\mid \\ $$$$={ln}\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}−\mathrm{1}}\right)={ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\:\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} ={ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\: \\ $$$${another}\:{way}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:=\left[{argsh}\left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\left[{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:={ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com