Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 4365 by Filup last updated on 13/Jan/16

Is the following correct?    S=Σ_(i=1) ^∞ 2^(i−1)   S=1+2+4+8+16+32+64+128+...  ∴2S=2+4+8+6+32+...  2S=S−1  S=−1

$$\mathrm{Is}\:\mathrm{the}\:\mathrm{following}\:\mathrm{correct}? \\ $$$$ \\ $$$${S}=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{2}^{{i}−\mathrm{1}} \\ $$$${S}=\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{8}+\mathrm{16}+\mathrm{32}+\mathrm{64}+\mathrm{128}+... \\ $$$$\therefore\mathrm{2}{S}=\mathrm{2}+\mathrm{4}+\mathrm{8}+\mathrm{6}+\mathrm{32}+... \\ $$$$\mathrm{2}{S}={S}−\mathrm{1} \\ $$$${S}=−\mathrm{1} \\ $$

Commented by Filup last updated on 13/Jan/16

or  S=Σ_(i=n) ^∞ 2^i   S=2^n +2^(n+1) +2^(n+2) +...  2S=2^(n+1) +2^(n+2) +2^(n+3) +...  2S=S−2^n   ∴S=−2^n     can be taken further:  S=Σ_(i=n) ^∞ a^i   S=a^n +a^(n+1) +a^(n+2) +...  aS=a^(n+1) +a^(n+2) +a^(n+3) +...  aS=S−a^n   S=−(a^n /(a−1))  ∴S=(a^n /(1−a))

$${or} \\ $$$${S}=\underset{{i}={n}} {\overset{\infty} {\sum}}\mathrm{2}^{{i}} \\ $$$${S}=\mathrm{2}^{{n}} +\mathrm{2}^{{n}+\mathrm{1}} +\mathrm{2}^{{n}+\mathrm{2}} +... \\ $$$$\mathrm{2}{S}=\mathrm{2}^{{n}+\mathrm{1}} +\mathrm{2}^{{n}+\mathrm{2}} +\mathrm{2}^{{n}+\mathrm{3}} +... \\ $$$$\mathrm{2}{S}={S}−\mathrm{2}^{{n}} \\ $$$$\therefore{S}=−\mathrm{2}^{{n}} \\ $$$$ \\ $$$${can}\:{be}\:{taken}\:{further}: \\ $$$${S}=\underset{{i}={n}} {\overset{\infty} {\sum}}{a}^{{i}} \\ $$$${S}={a}^{{n}} +{a}^{{n}+\mathrm{1}} +{a}^{{n}+\mathrm{2}} +... \\ $$$${aS}={a}^{{n}+\mathrm{1}} +{a}^{{n}+\mathrm{2}} +{a}^{{n}+\mathrm{3}} +... \\ $$$${aS}={S}−{a}^{{n}} \\ $$$${S}=−\frac{{a}^{{n}} }{{a}−\mathrm{1}} \\ $$$$\therefore{S}=\frac{{a}^{{n}} }{\mathrm{1}−{a}} \\ $$

Commented by Filup last updated on 13/Jan/16

is   S=(a^n /(1−a))   only true as a limiting sum?  or is it an analytical solution?

$$\mathrm{is}\:\:\:{S}=\frac{{a}^{{n}} }{\mathrm{1}−{a}}\:\:\:\mathrm{only}\:\mathrm{true}\:\mathrm{as}\:\mathrm{a}\:\mathrm{limiting}\:\mathrm{sum}? \\ $$$$\mathrm{or}\:\mathrm{is}\:\mathrm{it}\:\mathrm{an}\:\mathrm{analytical}\:\mathrm{solution}? \\ $$

Commented by Yozzii last updated on 13/Jan/16

S(x)=Σ_(i=1) ^∞ x^(i−1) =1+x+x^2 +x^3 +...  xS(x)=x+x^2 +x^3 +x^4 +...  ∴(1−x)S(x)=1  S(x)=(1/(1−x)). This assumes x≠1   and that S(x), being the limit of Σ_(i=1) ^∞ x^(i−1) ,  exists.   Now,let S(x,n)=Σ_(i=1) ^n x^(i−1) =((x^n −1)/(x−1))  (x≠1)  S(x,n)=(x^n /(x−1))+(1/(1−x)).  If ∣x∣>1⇒lim_(n→∞) x^n  does not exist.   ⇒lim_(n→∞) S(x,n) does not exist. So, if x=2>1  S does not have a limit so that S≠−1.    It′s interesting how you′ve shown  S=−1. But by the concept of number  as a vector how can the infinite  sum of positive numbers (vectors)   give a negative number (opposite vector  direction)?

$${S}\left({x}\right)=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}{x}^{{i}−\mathrm{1}} =\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +... \\ $$$${xS}\left({x}\right)={x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +{x}^{\mathrm{4}} +... \\ $$$$\therefore\left(\mathrm{1}−{x}\right){S}\left({x}\right)=\mathrm{1} \\ $$$${S}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}−{x}}.\:{This}\:{assumes}\:{x}\neq\mathrm{1}\: \\ $$$${and}\:{that}\:{S}\left({x}\right),\:{being}\:{the}\:{limit}\:{of}\:\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}{x}^{{i}−\mathrm{1}} , \\ $$$${exists}.\: \\ $$$${Now},{let}\:{S}\left({x},{n}\right)=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{x}^{{i}−\mathrm{1}} =\frac{{x}^{{n}} −\mathrm{1}}{{x}−\mathrm{1}}\:\:\left({x}\neq\mathrm{1}\right) \\ $$$${S}\left({x},{n}\right)=\frac{{x}^{{n}} }{{x}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{1}−{x}}. \\ $$$${If}\:\mid{x}\mid>\mathrm{1}\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}{x}^{{n}} \:{does}\:{not}\:{exist}.\: \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}{S}\left({x},{n}\right)\:{does}\:{not}\:{exist}.\:{So},\:{if}\:{x}=\mathrm{2}>\mathrm{1} \\ $$$${S}\:{does}\:{not}\:{have}\:{a}\:{limit}\:{so}\:{that}\:{S}\neq−\mathrm{1}. \\ $$$$ \\ $$$${It}'{s}\:{interesting}\:{how}\:{you}'{ve}\:{shown} \\ $$$${S}=−\mathrm{1}.\:{But}\:{by}\:{the}\:{concept}\:{of}\:{number} \\ $$$${as}\:{a}\:{vector}\:{how}\:{can}\:{the}\:{infinite} \\ $$$${sum}\:{of}\:{positive}\:{numbers}\:\left({vectors}\right)\: \\ $$$${give}\:{a}\:{negative}\:{number}\:\left({opposite}\:{vector}\right. \\ $$$$\left.{direction}\right)? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by prakash jain last updated on 13/Jan/16

S=−1 using analytical continuity.  f(x)=(1/(1−x))

$${S}=−\mathrm{1}\:\mathrm{using}\:\mathrm{analytical}\:\mathrm{continuity}. \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$

Commented by malwaan last updated on 14/Jan/16

I think s=−1 is wronge

$${I}\:{think}\:{s}=−\mathrm{1}\:{is}\:{wronge} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com