Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43657 by Tinkutara last updated on 13/Sep/18

Commented by maxmathsup by imad last updated on 24/Sep/18

let A = ∫   (dx/((x^2  +2x +10)^2 )) we have A =∫   (dx/({(x+1)^2  +9}^2 ))  changement x+1 =3tanθ give   A = ∫    ((3 (1+tan^2 θ)dθ)/(81{1+tan^2 θ}^2 )) = (1/(27)) ∫     (dθ/(1+tan^2 θ)) =(1/(54)) ∫ (1+cos(2θ)dθ  =(θ/(54)) +(1/(108)) sin(2θ) =(1/(54)) arctan(((x+1)/3)) +(1/(108)) ((2tanθ)/(1+tan^2 θ))  A=(1/(54))arctan(((x+1)/3)) +(1/(54))   ((x+1)/(3(1+(((x+1)/3))^2 ))) +c .

$${let}\:{A}\:=\:\int\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{2}{x}\:+\mathrm{10}\right)^{\mathrm{2}} }\:{we}\:{have}\:{A}\:=\int\:\:\:\frac{{dx}}{\left\{\left({x}+\mathrm{1}\right)^{\mathrm{2}} \:+\mathrm{9}\right\}^{\mathrm{2}} } \\ $$$${changement}\:{x}+\mathrm{1}\:=\mathrm{3}{tan}\theta\:{give}\: \\ $$$${A}\:=\:\int\:\:\:\:\frac{\mathrm{3}\:\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right){d}\theta}{\mathrm{81}\left\{\mathrm{1}+{tan}^{\mathrm{2}} \theta\right\}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{27}}\:\int\:\:\:\:\:\frac{{d}\theta}{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\:=\frac{\mathrm{1}}{\mathrm{54}}\:\int\:\left(\mathrm{1}+{cos}\left(\mathrm{2}\theta\right){d}\theta\right. \\ $$$$=\frac{\theta}{\mathrm{54}}\:+\frac{\mathrm{1}}{\mathrm{108}}\:{sin}\left(\mathrm{2}\theta\right)\:=\frac{\mathrm{1}}{\mathrm{54}}\:{arctan}\left(\frac{{x}+\mathrm{1}}{\mathrm{3}}\right)\:+\frac{\mathrm{1}}{\mathrm{108}}\:\frac{\mathrm{2}{tan}\theta}{\mathrm{1}+{tan}^{\mathrm{2}} \theta} \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{54}}{arctan}\left(\frac{{x}+\mathrm{1}}{\mathrm{3}}\right)\:+\frac{\mathrm{1}}{\mathrm{54}}\:\:\:\frac{{x}+\mathrm{1}}{\mathrm{3}\left(\mathrm{1}+\left(\frac{{x}+\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} \right)}\:+{c}\:. \\ $$$$ \\ $$

Answered by ajfour last updated on 13/Sep/18

  ∫(dx/([(x+1)^2 +3^2 ]^2 ))  let  x+1=3tan 𝛉  ⇒ ∫ ((3sec^2 θdθ)/(81sec^4 θ)) = (1/(54))∫2cos^2 θdθ +c    ....    = (1/(54))[ tan^(−1) (((x+1)/3))+((3(x+1))/((x^2 +2x+10)))]+c .

$$\:\:\int\frac{{dx}}{\left[\left({x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \right]^{\mathrm{2}} } \\ $$$${let}\:\:\boldsymbol{{x}}+\mathrm{1}=\mathrm{3tan}\:\boldsymbol{\theta} \\ $$$$\Rightarrow\:\int\:\frac{\mathrm{3sec}\:^{\mathrm{2}} \theta{d}\theta}{\mathrm{81sec}\:^{\mathrm{4}} \theta}\:=\:\frac{\mathrm{1}}{\mathrm{54}}\int\mathrm{2cos}\:^{\mathrm{2}} \theta{d}\theta\:+{c}\:\: \\ $$$$.... \\ $$$$\:\:=\:\frac{\mathrm{1}}{\mathrm{54}}\left[\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{{x}+\mathrm{1}}{\mathrm{3}}\right)+\frac{\mathrm{3}\left({x}+\mathrm{1}\right)}{\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{10}\right)}\right]+{c}\:. \\ $$

Commented by Tinkutara last updated on 14/Sep/18

Thank you very much Sir! But in answer there is no multiplication with 3 in numerator of 2nd term.

Commented by Tinkutara last updated on 14/Sep/18

Commented by MJS last updated on 14/Sep/18

(d/dx)[(1/(54))(arctan ((x+1)/3)+((x+1)/(x^2 +2x+10))]=  =(1/(54))((1/(3((((x+1)^2 )/9)+1)))+((x^2 +2x+10−(x+1)(2x+2))/((x^2 +2x+10)^2 )))  =(1/(54))((3/(x^2 +2x+10))+((−x^2 −2x+8)/((x^2 +2x+10)^2 )))=  =(1/(27))×((x^2 +2x+19)/((x^2 +2x+10)^2 ))  so the book is wrong

$$\frac{{d}}{{dx}}\left[\frac{\mathrm{1}}{\mathrm{54}}\left(\mathrm{arctan}\:\frac{{x}+\mathrm{1}}{\mathrm{3}}+\frac{{x}+\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{10}}\right]=\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{54}}\left(\frac{\mathrm{1}}{\mathrm{3}\left(\frac{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{9}}+\mathrm{1}\right)}+\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{10}−\left({x}+\mathrm{1}\right)\left(\mathrm{2}{x}+\mathrm{2}\right)}{\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{10}\right)^{\mathrm{2}} }\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{54}}\left(\frac{\mathrm{3}}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{10}}+\frac{−{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{8}}{\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{10}\right)^{\mathrm{2}} }\right)= \\ $$$$=\frac{\mathrm{1}}{\mathrm{27}}×\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{19}}{\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{10}\right)^{\mathrm{2}} } \\ $$$$\mathrm{so}\:\mathrm{the}\:\mathrm{book}\:\mathrm{is}\:\mathrm{wrong} \\ $$

Commented by Tinkutara last updated on 14/Sep/18

Thank you Sir!

Answered by tanmay.chaudhury50@gmail.com last updated on 14/Sep/18

∫(dx/({(x+1)^2 +3^2 }^2 ))  x+1=3tanα  dx=3sec^2 αdα  ∫((3sec^2 αdα)/({3^2 (1+tan^2 α)}^2 ))  (1/(27))∫((sec^2 αdα)/(sec^4 α))  (1/(27))∫((1+cos2α)/2)dα  (1/(54)){α+((sin2α)/2)}+c  (1/(54)){tan^(−1) (((x+1)/3))+(1/2)×((2tanα)/(1+tan^2 α))}  (1/(54)){tan^(−1) (((x+1)/3))+(((x+1)/3)/(1+(((x+1)/3))^2 ))}+c  (1/(54)){tan^(−1) (((x+1)/3))+((3(x+1))/(x^2 +2x+10))}+c

$$\int\frac{{dx}}{\left\{\left({x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \right\}^{\mathrm{2}} } \\ $$$${x}+\mathrm{1}=\mathrm{3}{tan}\alpha \\ $$$${dx}=\mathrm{3}{sec}^{\mathrm{2}} \alpha{d}\alpha \\ $$$$\int\frac{\mathrm{3}{sec}^{\mathrm{2}} \alpha{d}\alpha}{\left\{\mathrm{3}^{\mathrm{2}} \left(\mathrm{1}+{tan}^{\mathrm{2}} \alpha\right)\right\}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{\mathrm{27}}\int\frac{{sec}^{\mathrm{2}} \alpha{d}\alpha}{{sec}^{\mathrm{4}} \alpha} \\ $$$$\frac{\mathrm{1}}{\mathrm{27}}\int\frac{\mathrm{1}+{cos}\mathrm{2}\alpha}{\mathrm{2}}{d}\alpha \\ $$$$\frac{\mathrm{1}}{\mathrm{54}}\left\{\alpha+\frac{{sin}\mathrm{2}\alpha}{\mathrm{2}}\right\}+{c} \\ $$$$\frac{\mathrm{1}}{\mathrm{54}}\left\{{tan}^{−\mathrm{1}} \left(\frac{{x}+\mathrm{1}}{\mathrm{3}}\right)+\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{2}{tan}\alpha}{\mathrm{1}+{tan}^{\mathrm{2}} \alpha}\right\} \\ $$$$\frac{\mathrm{1}}{\mathrm{54}}\left\{{tan}^{−\mathrm{1}} \left(\frac{{x}+\mathrm{1}}{\mathrm{3}}\right)+\frac{\frac{{x}+\mathrm{1}}{\mathrm{3}}}{\mathrm{1}+\left(\frac{{x}+\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} }\right\}+{c} \\ $$$$\frac{\mathrm{1}}{\mathrm{54}}\left\{{tan}^{−\mathrm{1}} \left(\frac{{x}+\mathrm{1}}{\mathrm{3}}\right)+\frac{\mathrm{3}\left({x}+\mathrm{1}\right)}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{10}}\right\}+{c} \\ $$

Commented by Tinkutara last updated on 14/Sep/18

Thanks very much Sir! But please check the answer in book.

Answered by MJS last updated on 14/Sep/18

∫(dx/((x^2 +2x+10)^2 ))=∫(dx/(((x+1)^2 +9)^2 ))=       [t=x+1 → dx=dt]  =∫(dt/((t^2 +9)^2 ))=       [reduction formula        ∫(dt/((at^2 +b)^n ))=(t/(2b(n−1)(at^2 +b)^(n−1) ))+((2n−3)/(2b(n−1)))∫(dt/((at^2 +b)^(n−1) ))]  =(t/(18(t^2 +9)))+(1/(18))∫(dt/(t^2 +9))=         ∫(dt/(t^2 +9))=            [u=(t/3) → dt=3du]       =(1/3)∫(du/(u^2 +1))=(1/3)arctan u=(1/3)arctan (t/3)    =(t/(18(t^2 +9)))+(1/(54))arctan (t/3)=  =((x+1)/(18(x^2 +2x+10)))+(1/(54))arctan ((x+1)/3) +C

$$\int\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{10}\right)^{\mathrm{2}} }=\int\frac{{dx}}{\left(\left({x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{9}\right)^{\mathrm{2}} }= \\ $$$$\:\:\:\:\:\left[{t}={x}+\mathrm{1}\:\rightarrow\:{dx}={dt}\right] \\ $$$$=\int\frac{{dt}}{\left({t}^{\mathrm{2}} +\mathrm{9}\right)^{\mathrm{2}} }= \\ $$$$\:\:\:\:\:\left[\mathrm{reduction}\:\mathrm{formula}\right. \\ $$$$\left.\:\:\:\:\:\:\int\frac{{dt}}{\left({at}^{\mathrm{2}} +{b}\right)^{{n}} }=\frac{{t}}{\mathrm{2}{b}\left({n}−\mathrm{1}\right)\left({at}^{\mathrm{2}} +{b}\right)^{{n}−\mathrm{1}} }+\frac{\mathrm{2}{n}−\mathrm{3}}{\mathrm{2}{b}\left({n}−\mathrm{1}\right)}\int\frac{{dt}}{\left({at}^{\mathrm{2}} +{b}\right)^{{n}−\mathrm{1}} }\right] \\ $$$$=\frac{{t}}{\mathrm{18}\left({t}^{\mathrm{2}} +\mathrm{9}\right)}+\frac{\mathrm{1}}{\mathrm{18}}\int\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{9}}= \\ $$$$ \\ $$$$\:\:\:\:\:\int\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{9}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[{u}=\frac{{t}}{\mathrm{3}}\:\rightarrow\:{dt}=\mathrm{3}{du}\right] \\ $$$$\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{3}}\int\frac{{du}}{{u}^{\mathrm{2}} +\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arctan}\:{u}=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arctan}\:\frac{{t}}{\mathrm{3}} \\ $$$$ \\ $$$$=\frac{{t}}{\mathrm{18}\left({t}^{\mathrm{2}} +\mathrm{9}\right)}+\frac{\mathrm{1}}{\mathrm{54}}\mathrm{arctan}\:\frac{{t}}{\mathrm{3}}= \\ $$$$=\frac{{x}+\mathrm{1}}{\mathrm{18}\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{10}\right)}+\frac{\mathrm{1}}{\mathrm{54}}\mathrm{arctan}\:\frac{{x}+\mathrm{1}}{\mathrm{3}}\:+{C} \\ $$

Commented by Tinkutara last updated on 14/Sep/18

Thanks very much.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com