Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 43694 by Tawa1 last updated on 14/Sep/18

Using the method of dimension, derive an expression for the velocity  of sound waves (v) through a medium. Assume that the velocity   depends on:  (i) Modulus of elasticity (E) of the medium  (ii) The density of the medium (ρ), take the constant K = 1

$$\mathrm{Using}\:\mathrm{the}\:\mathrm{method}\:\mathrm{of}\:\mathrm{dimension},\:\mathrm{derive}\:\mathrm{an}\:\mathrm{expression}\:\mathrm{for}\:\mathrm{the}\:\mathrm{velocity} \\ $$$$\mathrm{of}\:\mathrm{sound}\:\mathrm{waves}\:\left(\mathrm{v}\right)\:\mathrm{through}\:\mathrm{a}\:\mathrm{medium}.\:\mathrm{Assume}\:\mathrm{that}\:\mathrm{the}\:\mathrm{velocity}\: \\ $$$$\mathrm{depends}\:\mathrm{on}:\:\:\left(\mathrm{i}\right)\:\mathrm{Modulus}\:\mathrm{of}\:\mathrm{elasticity}\:\left(\mathrm{E}\right)\:\mathrm{of}\:\mathrm{the}\:\mathrm{medium} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{The}\:\mathrm{density}\:\mathrm{of}\:\mathrm{the}\:\mathrm{medium}\:\left(\rho\right),\:\mathrm{take}\:\mathrm{the}\:\mathrm{constant}\:\mathrm{K}\:=\:\mathrm{1} \\ $$

Answered by alex041103 last updated on 14/Sep/18

    We know that  E=[(N/m^2 )]=[((kg(m/s^2 ))/m^2 )]=[m^(−1) s^(−2) kg^1 ]  ρ=[((kg)/m^3 )]=[m^(−3) kg^1 ]  v=[(m/s)]=[ms^(−1) ]  ⇒We suppose v=K E^α ρ^β   ⇒ms^(−1) =m^(−α) s^(−2α) kg^α  m^(−3β) kg^β    ⇒m^1 s^(−1) kg^0 =m^(−(α+3β)) s^(−2α) kg^(α+β)     −α−3β=1⇒α+3β=−1  −2α=−1⇒α=(1/2)  α+β=0⇒β=−α=−(1/2)  And α+3β=(1/2)+3(−(1/2))=−1  ⇒α=1/2 and β=−1/2  ⇒v=K E^(1/2) ρ^(−1/2)   But K=1  ⇒v=(√(E/ρ))

$$ \\ $$$$ \\ $$$${We}\:{know}\:{that} \\ $$$${E}=\left[\frac{{N}}{{m}^{\mathrm{2}} }\right]=\left[\frac{{kg}\frac{{m}}{{s}^{\mathrm{2}} }}{{m}^{\mathrm{2}} }\right]=\left[{m}^{−\mathrm{1}} {s}^{−\mathrm{2}} {kg}^{\mathrm{1}} \right] \\ $$$$\rho=\left[\frac{{kg}}{{m}^{\mathrm{3}} }\right]=\left[{m}^{−\mathrm{3}} {kg}^{\mathrm{1}} \right] \\ $$$${v}=\left[\frac{{m}}{{s}}\right]=\left[{ms}^{−\mathrm{1}} \right] \\ $$$$\Rightarrow{We}\:{suppose}\:{v}={K}\:{E}^{\alpha} \rho^{\beta} \\ $$$$\Rightarrow{ms}^{−\mathrm{1}} ={m}^{−\alpha} {s}^{−\mathrm{2}\alpha} {kg}^{\alpha} \:{m}^{−\mathrm{3}\beta} {kg}^{\beta} \: \\ $$$$\Rightarrow{m}^{\mathrm{1}} {s}^{−\mathrm{1}} {kg}^{\mathrm{0}} ={m}^{−\left(\alpha+\mathrm{3}\beta\right)} {s}^{−\mathrm{2}\alpha} {kg}^{\alpha+\beta} \\ $$$$ \\ $$$$−\alpha−\mathrm{3}\beta=\mathrm{1}\Rightarrow\alpha+\mathrm{3}\beta=−\mathrm{1} \\ $$$$−\mathrm{2}\alpha=−\mathrm{1}\Rightarrow\alpha=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\alpha+\beta=\mathrm{0}\Rightarrow\beta=−\alpha=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${And}\:\alpha+\mathrm{3}\beta=\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{3}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)=−\mathrm{1} \\ $$$$\Rightarrow\alpha=\mathrm{1}/\mathrm{2}\:{and}\:\beta=−\mathrm{1}/\mathrm{2} \\ $$$$\Rightarrow{v}={K}\:{E}^{\mathrm{1}/\mathrm{2}} \rho^{−\mathrm{1}/\mathrm{2}} \\ $$$${But}\:{K}=\mathrm{1} \\ $$$$\Rightarrow{v}=\sqrt{\frac{{E}}{\rho}} \\ $$

Commented by Tawa1 last updated on 14/Sep/18

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by alex041103 last updated on 14/Sep/18

You are welcome!

$${You}\:{are}\:{welcome}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com