Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 43759 by ajfour last updated on 15/Sep/18

Answered by MrW3 last updated on 15/Sep/18

eqn. of line:  x=(y/m)+a  b^2 y=x(x^2 −a^2 )  b^2 (dy/dx)=3x^2 −a^2   b^2 m=3x^2 −a^2   ⇒x^2 =((a^2 +b^2 m)/3)  b^2 (x−a)m=x(x^2 −a^2 )  −ab^2 m=x(x^2 −a^2 −b^2 m)  ab^2 m=2x(((a^2 +b^2 m)/3))  ((3ab^2 m)/(a^2 +b^2 m))=2x  (((3ab^2 m)/(a^2 +b^2 m)))^2 =4x^2 =((4(a^2 +b^2 m))/3)  4(a^2 +b^2 m)^3 =27(ab^2 m)^2   with k=a^2 , λ=b^2 m  4(k+λ)^3 =27kλ^2   4k^3 +12k^2 λ−15kλ^2 +4λ^3 =0  with p=(λ/k)=((b^2 m)/a^2 )  4p^3 −15p^2 +12p+4=0  (p−2)^2 (4x+1)=0  p=2 (+ve, not suitable), p=−(1/4)  ⇒m=p((a/b))^2 =−(1/4)((a/b))^2   ⇒eqn. x=−((4y)/(((a/b))^2 ))+a

$${eqn}.\:{of}\:{line}: \\ $$$${x}=\frac{{y}}{{m}}+{a} \\ $$$${b}^{\mathrm{2}} {y}={x}\left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} \right) \\ $$$${b}^{\mathrm{2}} \frac{{dy}}{{dx}}=\mathrm{3}{x}^{\mathrm{2}} −{a}^{\mathrm{2}} \\ $$$${b}^{\mathrm{2}} {m}=\mathrm{3}{x}^{\mathrm{2}} −{a}^{\mathrm{2}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} {m}}{\mathrm{3}} \\ $$$${b}^{\mathrm{2}} \left({x}−{a}\right){m}={x}\left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} \right) \\ $$$$−{ab}^{\mathrm{2}} {m}={x}\left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} −{b}^{\mathrm{2}} {m}\right) \\ $$$${ab}^{\mathrm{2}} {m}=\mathrm{2}{x}\left(\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} {m}}{\mathrm{3}}\right) \\ $$$$\frac{\mathrm{3}{ab}^{\mathrm{2}} {m}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} {m}}=\mathrm{2}{x} \\ $$$$\left(\frac{\mathrm{3}{ab}^{\mathrm{2}} {m}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} {m}}\right)^{\mathrm{2}} =\mathrm{4}{x}^{\mathrm{2}} =\frac{\mathrm{4}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} {m}\right)}{\mathrm{3}} \\ $$$$\mathrm{4}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} {m}\right)^{\mathrm{3}} =\mathrm{27}\left({ab}^{\mathrm{2}} {m}\right)^{\mathrm{2}} \\ $$$${with}\:{k}={a}^{\mathrm{2}} ,\:\lambda={b}^{\mathrm{2}} {m} \\ $$$$\mathrm{4}\left({k}+\lambda\right)^{\mathrm{3}} =\mathrm{27}{k}\lambda^{\mathrm{2}} \\ $$$$\mathrm{4}{k}^{\mathrm{3}} +\mathrm{12}{k}^{\mathrm{2}} \lambda−\mathrm{15}{k}\lambda^{\mathrm{2}} +\mathrm{4}\lambda^{\mathrm{3}} =\mathrm{0} \\ $$$${with}\:{p}=\frac{\lambda}{{k}}=\frac{{b}^{\mathrm{2}} {m}}{{a}^{\mathrm{2}} } \\ $$$$\mathrm{4}{p}^{\mathrm{3}} −\mathrm{15}{p}^{\mathrm{2}} +\mathrm{12}{p}+\mathrm{4}=\mathrm{0} \\ $$$$\left({p}−\mathrm{2}\right)^{\mathrm{2}} \left(\mathrm{4}{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$${p}=\mathrm{2}\:\left(+{ve},\:{not}\:{suitable}\right),\:{p}=−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\Rightarrow{m}={p}\left(\frac{{a}}{{b}}\right)^{\mathrm{2}} =−\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{{a}}{{b}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{eqn}.\:{x}=−\frac{\mathrm{4}{y}}{\left(\frac{{a}}{{b}}\right)^{\mathrm{2}} }+{a} \\ $$

Commented by MrW3 last updated on 15/Sep/18

Commented by ajfour last updated on 15/Sep/18

Thanks sir, see my solution!

$${Thanks}\:{sir},\:{see}\:{my}\:{solution}! \\ $$

Answered by ajfour last updated on 15/Sep/18

let eq. of line be:   y=m(x−a)  eq. of curve:    b^2 y=x(x^2 −a^2 )   solving simultaneously    (y/(x−a)) = m =((x(x+a))/b^2 )  ⇒   x^2 +ax−b^2 m=0  for unique  x value        4b^2 m = −a^2   or     m=−(a^2 /(4b^2 ))  eq. of line is then          y=−(a^2 /(4b^2 ))(x−a)  or    4b^2 y = a^2 (a−x) .

$${let}\:{eq}.\:{of}\:{line}\:{be}:\:\:\:\boldsymbol{{y}}=\boldsymbol{{m}}\left(\boldsymbol{{x}}−\boldsymbol{{a}}\right) \\ $$$${eq}.\:{of}\:{curve}:\:\:\:\:\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{{y}}=\boldsymbol{{x}}\left(\boldsymbol{{x}}^{\mathrm{2}} −\boldsymbol{{a}}^{\mathrm{2}} \right) \\ $$$$\:{solving}\:{simultaneously} \\ $$$$\:\:\frac{{y}}{{x}−{a}}\:=\:{m}\:=\frac{{x}\left({x}+{a}\right)}{{b}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\:\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{ax}}−\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{{m}}=\mathrm{0} \\ $$$${for}\:{unique}\:\:\boldsymbol{{x}}\:{value} \\ $$$$\:\:\:\:\:\:\mathrm{4}\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{{m}}\:=\:−\boldsymbol{{a}}^{\mathrm{2}} \\ $$$${or}\:\:\:\:\:\boldsymbol{{m}}=−\frac{\boldsymbol{{a}}^{\mathrm{2}} }{\mathrm{4}\boldsymbol{{b}}^{\mathrm{2}} } \\ $$$$\boldsymbol{{eq}}.\:\boldsymbol{{of}}\:\boldsymbol{{line}}\:{is}\:{then} \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{{y}}=−\frac{\boldsymbol{{a}}^{\mathrm{2}} }{\mathrm{4}\boldsymbol{{b}}^{\mathrm{2}} }\left(\boldsymbol{{x}}−\boldsymbol{{a}}\right) \\ $$$${or}\:\:\:\:\mathrm{4}\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{{y}}\:=\:\boldsymbol{{a}}^{\mathrm{2}} \left(\boldsymbol{{a}}−\boldsymbol{{x}}\right)\:. \\ $$

Commented by MrW3 last updated on 15/Sep/18

super solution!

$${super}\:{solution}! \\ $$

Commented by ajfour last updated on 15/Sep/18

thanks for the adjective Sir!

$${thanks}\:{for}\:{the}\:{adjective}\:{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com