All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 43808 by maxmathsup by imad last updated on 15/Sep/18
letI=∫0∞dxx4−iandJ=∫0∞dxx4+i1)findvaluesofIandJ2)calculateI+J3)calculate∫0∞dxx8+1
Commented by maxmathsup by imad last updated on 21/Sep/18
1)wehavei=(eiπ8)4changementx=teiπ8giveJ=∫0∞eiπ8dtit4+i=−ieiπ8∫0∞dt1+t4alsocha7gementt=u14⇒∫0∞dt1+t4=∫0∞11+u14u14−1du=14πsin(π4)=π4122=π22⇒J=−iπ22eiπ8andI=J−=iπ22e−iπ82)wehaveI+J=iπ22e−iπ8−iπ22eiπ8=−iπ22{eiπ8−e−iπ8}=−iπ22(2isin(π8))=π22−22=π222−2.3)wehaveI−J=∫0∞(1x4−i−1x4+i)dx=∫0∞2ix8+1dx⇒∫0∞dx1+x8=12i{I−J}butI−J=iπ22e−iπ8+iπ22eiπ8=iπ22(2cos(π8)}=iπ22+22⇒∫0∞dx1+x8=12iiπ222+2=π422+2.remarkwehaveI+J=∫0∞(1x4−i+1x4+i)dx=∫0∞2x41+x8dx=π222−2⇒∫0∞x41+x8dx=π422−2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com