Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43808 by maxmathsup by imad last updated on 15/Sep/18

let I = ∫_0 ^∞   (dx/(x^4 −i)) and J = ∫_0 ^∞     (dx/(x^4  +i))  1) find  values of I and J  2) calculate I +J  3) calculate ∫_0 ^∞    (dx/(x^(8 )  +1))

letI=0dxx4iandJ=0dxx4+i1)findvaluesofIandJ2)calculateI+J3)calculate0dxx8+1

Commented by maxmathsup by imad last updated on 21/Sep/18

1) we have i =(e^((iπ)/8) )^4  changement   x =t e^((iπ)/8)   give  J= ∫_0 ^∞   ((e^((iπ)/8)  dt)/(i t^4  +i)) =−i e^((iπ)/8)   ∫_0 ^∞    (dt/(1+t^4 )) also cha7gement t =u^(1/4)  ⇒  ∫_0 ^∞   (dt/(1+t^4 )) =∫_0 ^∞    (1/(1+u)) (1/4) u^((1/4)−1) du =(1/4) (π/(sin((π/4)))) =(π/4) (1/((√2)/2)) =(π/(2(√2))) ⇒  J =−((iπ)/(2(√2))) e^((iπ)/8)   and I =J^−  =((iπ)/(2(√2))) e^(−((iπ)/8))   2) we have I +J =((iπ)/(2(√2))) e^(−((iπ)/8))  −((iπ)/(2(√2))) e^((iπ)/8)  =−((iπ)/(2(√2))){e^((iπ)/8)  −e^(−i(π/8)) }  =−((iπ)/(2(√2)))(2i sin((π/8))) =(π/(√2)) ((√(2−(√2)))/2) =(π/(2(√2)))(√(2−(√2))).  3) we have I −J =∫_0 ^∞   ((1/(x^4 −i)) −(1/(x^4  +i)))dx  =∫_0 ^∞   ((2i)/(x^8  +1)) dx  ⇒∫_0 ^∞   (dx/(1+x^8 )) =(1/(2i)){I −J} but   I −J = ((iπ)/(2(√2))) e^(−((iπ)/8))   +((iπ)/(2(√2))) e^((iπ)/8)  =((iπ)/(2(√2))) (2cos((π/8))} =((iπ)/(√2)) ((√(2+(√2)))/2) ⇒  ∫_0 ^∞    (dx/(1+x^8 )) =(1/(2i)) ((iπ)/(2(√2)))(√(2+(√2)))=(π/(4(√2))) (√(2+(√2))).  remark we have I +J =∫_0 ^∞  ((1/(x^4 −i)) +(1/(x^4  +i)))dx  = ∫_0 ^∞   ((2x^4 )/(1+x^8 )) dx =(π/(2(√2)))(√(2−(√2))) ⇒∫_0 ^∞     (x^4 /(1+x^8 ))dx =(π/(4(√2)))(√(2−(√2))).

1)wehavei=(eiπ8)4changementx=teiπ8giveJ=0eiπ8dtit4+i=ieiπ80dt1+t4alsocha7gementt=u140dt1+t4=011+u14u141du=14πsin(π4)=π4122=π22J=iπ22eiπ8andI=J=iπ22eiπ82)wehaveI+J=iπ22eiπ8iπ22eiπ8=iπ22{eiπ8eiπ8}=iπ22(2isin(π8))=π2222=π2222.3)wehaveIJ=0(1x4i1x4+i)dx=02ix8+1dx0dx1+x8=12i{IJ}butIJ=iπ22eiπ8+iπ22eiπ8=iπ22(2cos(π8)}=iπ22+220dx1+x8=12iiπ222+2=π422+2.remarkwehaveI+J=0(1x4i+1x4+i)dx=02x41+x8dx=π22220x41+x8dx=π4222.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com