Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43823 by abdo.msup.com last updated on 15/Sep/18

let ϕ(a,x) =∫_0 ^(π/2)   (dt/(x+asin^2 t))  2) find a exlicite form of ϕ(a,x)  3)determine ϕ(1,x)and ϕ(a,1)  4)find the vslue of ∫_0 ^(π/2)    (dt/(2+3sin^2 t))  5)find  ∫_0 ^(π/2)    (dt/((x+asin^2 t)^2 ))  6) find ∫_0 ^(π/2)   ((sin^2 t)/((x+a sin^2 t)^2 ))dt .

letφ(a,x)=0π2dtx+asin2t2)findaexliciteformofφ(a,x)3)determineφ(1,x)andφ(a,1)4)findthevslueof0π2dt2+3sin2t5)find0π2dt(x+asin2t)26)find0π2sin2t(x+asin2t)2dt.

Commented by maxmathsup by imad last updated on 17/Sep/18

1) we have ϕ(a,x) =∫_0 ^(π/2)   (dt/(x+a ((1−cos(2t))/2))) = ∫_0 ^(π/2)    ((2dt)/(2x +a −a cos(2t)))  =_(2t =u)     ∫_0 ^π    (du/(2x +a−acosu)) =_(tan((u/2))=α)  ∫_0 ^∞     (1/(2x+a−a((1−α^2 )/(1+α^2 )))) ((2dα)/(1+α^2 ))  = ∫_0 ^∞      ((2 dα)/((2x+1)(1+α^2 )−a(1−α^2 ))) =∫_0 ^∞     ((2dα)/((2x+1) +(2x+1 +a)α^2 −a))  = ∫_0 ^∞      ((2dα)/((2x+1+a)α^2  + 2x+1−a)) =(2/((2x+1+a))) ∫_0 ^∞      (dα/(α^2  +((2x+1−a)/(2x+1+a))))  case 1   ((2x+1−a)/(2x+1+a))>0 changement α =(√((2x+1−a)/(2x+1+a)))z give  ϕ(a,x) = (2/((2x+1+a)))  ∫_0 ^∞   (1/(((2x+1−a)/(2x+1 +a))(1+z^2 ))) (√((2x+1−a)/(2x+1+a)))dz  =(2/(2x+1+a)) ((2x+1+a)/(2x+1−a)) (√((2x+1−a)/(2x+1+a)))(π/2) =(π/(2x+1+a)) (√((2x+1+a)/(2x+1−a)))  = (π/(√((2x+1+a)^2 −a^2 )))  case 2   ((2x+1−a)/(2x+1 +a))<0 ⇒ϕ(a,x) = (2/(2x+1+a)) ∫_0 ^∞   (dα/(α^2 −((a−(2x+1))/(a+2x+1))))  changement  α =(√((a−(2x+1))/(a+2x+1)))z give  ϕ(a,x) = (2/(2x+1+a))  ∫_0 ^∞      (1/(((a−(2x+1))/(a+2x+1))(z^2 −1))) (√((a−(2x+1))/(a+(2x+1)))) dz  = (2/(2x+1+a)) ((a +2x+1)/(a−(2x+1))) (√((a−(2x+1))/(a+(2x+1))))∫_0 ^∞    (dz/(z^2 −1))  = (π/(√(a^2 −(2x+1)^2 ))) (1/2)∫_0 ^∞    {(1/(z−1)) −(1/(z+1))}dz =(π/(2(√(a^2 −(2x+1)^2 ))))[ln∣((z−1)/(z+1))∣]_0 ^(+∞)  =0

1)wehaveφ(a,x)=0π2dtx+a1cos(2t)2=0π22dt2x+aacos(2t)=2t=u0πdu2x+aacosu=tan(u2)=α012x+aa1α21+α22dα1+α2=02dα(2x+1)(1+α2)a(1α2)=02dα(2x+1)+(2x+1+a)α2a=02dα(2x+1+a)α2+2x+1a=2(2x+1+a)0dαα2+2x+1a2x+1+acase12x+1a2x+1+a>0changementα=2x+1a2x+1+azgiveφ(a,x)=2(2x+1+a)012x+1a2x+1+a(1+z2)2x+1a2x+1+adz=22x+1+a2x+1+a2x+1a2x+1a2x+1+aπ2=π2x+1+a2x+1+a2x+1a=π(2x+1+a)2a2case22x+1a2x+1+a<0φ(a,x)=22x+1+a0dαα2a(2x+1)a+2x+1changementα=a(2x+1)a+2x+1zgiveφ(a,x)=22x+1+a01a(2x+1)a+2x+1(z21)a(2x+1)a+(2x+1)dz=22x+1+aa+2x+1a(2x+1)a(2x+1)a+(2x+1)0dzz21=πa2(2x+1)2120{1z11z+1}dz=π2a2(2x+1)2[lnz1z+1]0+=0

Commented by maxmathsup by imad last updated on 17/Sep/18

2) for a =1 we get ((2x+1−a)/(2x+1+a)) =((2x)/(2x+2)) =(x/(x+1))  case 1  (x/(x+1))>0 ⇒ϕ(1,x) = (π/(√(4(x+1)^2 −1)))  case 2  (x/(x+1))<0 ⇒ϕ(1,x) =0  also for x=1  we have ((2x+1−a)/(2x+1+a)) =((3−a)/(3+a))  case 1  ((3−a)/(3+a))>0 ⇒ ϕ(a,1) = (π/(√((3+a)^2 −a^2 )))  case 2  ((3−a)/(3+a))<0 ⇒ϕ(a,1)=0 .

2)fora=1weget2x+1a2x+1+a=2x2x+2=xx+1case1xx+1>0φ(1,x)=π4(x+1)21case2xx+1<0φ(1,x)=0alsoforx=1wehave2x+1a2x+1+a=3a3+acase13a3+a>0φ(a,1)=π(3+a)2a2case23a3+a<0φ(a,1)=0.

Commented by maxmathsup by imad last updated on 17/Sep/18

3)  ∫_0 ^(π/2)   (dt/(2+3sin^2 t)) =ϕ(3,2) wehave a=3 and x=2  we get ((2x+1−a)/(2x+1 +a)) =((5−3)/8) =(1/4)>0 ⇒ ϕ(3,2) = (π/(√((5+3)^2 −3^2 ))) =(π/(√(64−9))) =(π/(√(55)))

3)0π2dt2+3sin2t=φ(3,2)wehavea=3andx=2weget2x+1a2x+1+a=538=14>0φ(3,2)=π(5+3)232=π649=π55

Commented by maxmathsup by imad last updated on 18/Sep/18

4) we have ϕ(a,x) = ∫_0 ^(π/2)     (dt/(x+a sin^2 t)) ⇒ (∂ϕ/∂x)(a,x) =−∫_0 ^(π/2)   (dt/((x+asin^2 t)^2 )) ⇒  ∫_0 ^(π/2)     (dt/((x +asin^2 t)^2 )) =−(∂ϕ/∂x)(a,x)  case 1 ((2x+1−a)/(2x+1+a))>0 ⇒ϕ(a,x) =π{(2x+1+a)^2 −a^2 }^(−(1/2))  ⇒  (∂ϕ/∂x)(a,x) =−(π/2)(4(2x+1+a)){(2x+1+a)^2 −a^2 }^(−(3/2))   = ((2π(2x+1+a))/(((2x+1+a)^2 −a^2 )(√((2x+1+a)^2 −a^2 )))) .  case 2 ((zx+1−a)/(2x+1+a))<0 ⇒ϕ(a,x)=0 ⇒ (∂ϕ/∂x)(a,x)=0 .

4)wehaveφ(a,x)=0π2dtx+asin2tφx(a,x)=0π2dt(x+asin2t)20π2dt(x+asin2t)2=φx(a,x)case12x+1a2x+1+a>0φ(a,x)=π{(2x+1+a)2a2}12φx(a,x)=π2(4(2x+1+a)){(2x+1+a)2a2}32=2π(2x+1+a)((2x+1+a)2a2)(2x+1+a)2a2.case2zx+1a2x+1+a<0φ(a,x)=0φx(a,x)=0.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com