Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43832 by physics last updated on 16/Sep/18

Commented by physics last updated on 16/Sep/18

do with full explanation please

dowithfullexplanationplease

Commented by maxmathsup by imad last updated on 16/Sep/18

let A =∫    (dx/((x^2  +a^2 )^(3/2) ))  changement x=ash(t)give t=argsh((x/a))and  A = ∫   ((ach(t) dt)/(a^3 (ch^2 (t))^(3/2) )) =(1/a^2 ) ∫    (dt/(ch^2 (t)))         (we suppose a≠0)  A = (2/a^2 ) ∫      (dt/(1+ch(2t))) =(2/a^2 ) ∫   (dt/(1+((e^(2t)  +e^(−2t) )/2))) =(4/a^2 ) ∫    (dt/(2 +e^(2t)  +e^(−2t) ))  =_(e^(2t) =u)      (4/a^2 ) ∫   (1/(2 +u +u^(−1) )) (du/(2u)) =(2/a^2 ) ∫    (du/(2u +u^2  +1)) =(2/a^2 ) ∫  (du/((u+1)^2 ))  =((−2)/(a^2 (u+1))) +c =−(2/(a^2 ( 1+e^(2t) ))) but t=ln((x/a) +(√(1+(x^2 /a^2 )))) ⇒  e^(2t)  =((x/a) +(√(1+(x^2 /a^2 ))))^2  ⇒A =((−2)/(a^2 (1+((x/a)+(√(1+(x^2 /a^2 ))))^2 )) +c   if a=0 A = ∫  (dx/x^3 ) =∫ x^(−3) dx =(1/(−3+1))x^(−3+1)  +c =((−1)/(2x^2 )) +c .

letA=dx(x2+a2)32changementx=ash(t)givet=argsh(xa)andA=ach(t)dta3(ch2(t))32=1a2dtch2(t)(wesupposea0)A=2a2dt1+ch(2t)=2a2dt1+e2t+e2t2=4a2dt2+e2t+e2t=e2t=u4a212+u+u1du2u=2a2du2u+u2+1=2a2du(u+1)2=2a2(u+1)+c=2a2(1+e2t)butt=ln(xa+1+x2a2)e2t=(xa+1+x2a2)2A=2a2(1+(xa+1+x2a2)2+cifa=0A=dxx3=x3dx=13+1x3+1+c=12x2+c.

Answered by MJS last updated on 16/Sep/18

∫(dx/((x^2 +a^2 )^(3/2) ))=       [x=atan t → t=arctan (x/a) → dx=asec^2  t dt]  =∫((asec^2  t)/((a^2 +a^2 tan^2  t)^(3/2) ))dt=∫((asec^2  t)/(a^3 (1+tan^2  t)))dt=       [1+tan^2  t =1+((sin^2  t)/(cos^2  t))=((cos^2  t +sin^2  t)/(cos^2  t))=(1/(cos^2  t))=sec^2  t]  =(1/a^2 )∫((sec^2  t)/((sec^2  t)^(3/2) ))dt=(1/a^2 )∫(dt/(sec t))=(1/a^2 )∫cos t dt=  =(1/a^2 )sin t =(1/a^2 )sin arctan (x/a)=       [sin arctan t =(t/(√(t^2 +1)))]  =(x/(a^3 (√((x^2 /a^2 )+1))))=(x/(a^2 (√(x^2 +a^2 ))))+C

dx(x2+a2)32=[x=atantt=arctanxadx=asec2tdt]=asec2t(a2+a2tan2t)32dt=asec2ta3(1+tan2t)dt=[1+tan2t=1+sin2tcos2t=cos2t+sin2tcos2t=1cos2t=sec2t]=1a2sec2t(sec2t)32dt=1a2dtsect=1a2costdt==1a2sint=1a2sinarctanxa=[sinarctant=tt2+1]=xa3x2a2+1=xa2x2+a2+C

Commented by physics last updated on 19/Sep/18

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com