Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43840 by peter frank last updated on 16/Sep/18

Commented by maxmathsup by imad last updated on 16/Sep/18

let I = ∫_0 ^(π/2)    ((sin^4 x)/(cos^4 x +sin^4 x))dx  and J = ∫_0 ^(π/2)   ((cos^4 x)/(cos^4 x +sin^4 x))dx we have   I +J = ∫_0 ^(π/2)  dx =(π/2) and  J −I =∫_0 ^(π/2)   ((cos^4 x −sin^4 x)/(cos^4 x +sin^4 x))dx  = ∫_0 ^(π/2)   ((cos^2 x −sin^2 x)/((cos^2 x +sin^2 x)^2  −2cos^2 x sin^2 x))dx =∫_0 ^(π/2)   ((cos(2x))/(1−(1/2)sin^2 (2x)))dx  = ∫_0 ^(π/2)     ((2cos(2x))/(2−(1−cos^2 (2x))))dx = ∫_0 ^(π/2)   ((2cos(2x))/(1+cos^2 (2x)))dx  =_(2x=t)      ∫_0 ^π    ((2cost)/(1+cos^2 t)) dt = _(tan((t/2))=u)    ∫_0 ^∞       ((2 ((1−u^2 )/(1+u^2 )))/(1+(((1−u^2 )/(1+u^2 )))^2 )) ((2du)/(1+u^2 ))  = 4 ∫_0 ^∞        ((1−u^2 )/((1+u^2 )^2 { (((1+u^2 )^2  +(1−u^2 )^2 )/((1+u^2 )^2 ))}))du  = 4 ∫_0 ^∞     ((1−u^2 )/(u^4  +2u^2  +1 +u^4 −2u^2  +1))du =4 ∫_0 ^∞     ((1−u^2 )/(2(u^4  +1)))du  = 2 ∫_0 ^∞    ((1−u^2 )/(1+u^4 )) du =2 ∫_0 ^∞  (du/(1+u^4 )) −2 ∫_0 ^∞    (u^2 /(1+u^4 )) du but  ∫_0 ^∞     (du/(1+u^4 )) =(π/(2(√2)))     changement u=α^(1/4)   give  ∫_0 ^∞      (α^(1/2) /(1+α)) (1/4) α^((1/4)−1) dα = (1/4) ∫_0 ^∞     (α^((3/4)−1) /(1+α)) dα =(1/4) (π/(sin(((3π)/4)))) =(π/(4 ((√2)/2))) =(π/(2(√2))) ⇒  J−I = (π/(√2)) −(π/(√2)) =0 ⇒I =J ⇒ 2I =(π/2) ⇒ I =(π/4)  and J =(π/4) .

letI=0π2sin4xcos4x+sin4xdxandJ=0π2cos4xcos4x+sin4xdxwehaveI+J=0π2dx=π2andJI=0π2cos4xsin4xcos4x+sin4xdx=0π2cos2xsin2x(cos2x+sin2x)22cos2xsin2xdx=0π2cos(2x)112sin2(2x)dx=0π22cos(2x)2(1cos2(2x))dx=0π22cos(2x)1+cos2(2x)dx=2x=t0π2cost1+cos2tdt=tan(t2)=u021u21+u21+(1u21+u2)22du1+u2=401u2(1+u2)2{(1+u2)2+(1u2)2(1+u2)2}du=401u2u4+2u2+1+u42u2+1du=401u22(u4+1)du=201u21+u4du=20du1+u420u21+u4dubut0du1+u4=π22changementu=α14give0α121+α14α141dα=140α3411+αdα=14πsin(3π4)=π422=π22JI=π2π2=0I=J2I=π2I=π4andJ=π4.

Answered by Joel578 last updated on 16/Sep/18

∫_a ^b  f(x) dx = ∫_a ^b  f(a + b − x) dx    I = ∫_0 ^(π/2)  ((sin^4  x)/(cos^4  x + sin^4  x)) dx           ... (i)  using formula above gives us:  I = ∫_0 ^(π/2)  ((sin^4  ((π/2) − x))/(cos^4  ((π/2) − x) + sin^4  ((π/2) − x))) dx      = ∫_0 ^(π/2)  ((cos^4  x)/(sin^4  x + cos^4  x)) dx          ... (ii)    (i) + (ii)  2I = ∫_0 ^(π/2)  ((sin^4  x)/(cos^4  x + sin^4  x)) dx + ∫_0 ^(π/2)  ((cos^4  x)/(sin^4  x + cos^4  x)) dx        = ∫_0 ^(π/2)  1 dx        = (π/2)    I = (π/4)

abf(x)dx=abf(a+bx)dxI=0π2sin4xcos4x+sin4xdx...(i)usingformulaabovegivesus:I=0π2sin4(π2x)cos4(π2x)+sin4(π2x)dx=0π2cos4xsin4x+cos4xdx...(ii)(i)+(ii)2I=0π2sin4xcos4x+sin4xdx+0π2cos4xsin4x+cos4xdx=0π21dx=π2I=π4

Commented by Joel578 last updated on 16/Sep/18

Thanks to Mr. Tanmay who taught me  this method

ThankstoMr.Tanmaywhotaughtmethismethod

Commented by peter frank last updated on 16/Sep/18

thanks for your time

thanksforyourtime

Commented by tanmay.chaudhury50@gmail.com last updated on 16/Sep/18

thank you...you retained what you learned...

thankyou...youretainedwhatyoulearned...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com