Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 43856 by MASANJA J last updated on 16/Sep/18

given that  a×b=3i + j +k  a×c=−i −2j +k  find  i)c×a  ii)a×(b×c)  iii)(a×b)•(a×c)

giventhata×b=3i+j+ka×c=i2j+kfindi)c×aii)a×(b×c)iii)(a×b)(a×c)

Answered by tanmay.chaudhury50@gmail.com last updated on 16/Sep/18

i)c×a=−a×c  c×a=−(−i−2j+k)=i+2j−k    ii)a×(b×c)=(a.c)b−(a.b)c    so a×(b×c)=(accosθ_1 )−(abcosθ_2 )  now  a×c=acsinθ_1 n^→   ∣a×c∣=acsinθ_1   sinθ_1 =((√((−1)^2 +(−2)^2 +(1)^2 ))/(ac))=(((√6) )/(ac))  cosθ_1 =((√(a^2 c^2 −6))/(ac))  sinθ_2 =((√(3^2 +1^2 +1^2 ))/(ab))=((√(11))/(ab))  cosθ_2 =((√(a^2 b^2 −11))/(ab))  a×(b×c)=(a.c)b−(a.b)c    =(accosθ_1 )b−(abcosθ_2 )c    a×(b×c)={(√(a^2 c^2 −6))  }b^→  −{(√(a^2 b^2 −11))  }c^→

i)c×a=a×cc×a=(i2j+k)=i+2jkii)a×(b×c)=(a.c)b(a.b)csoa×(b×c)=(accosθ1)(abcosθ2)nowa×c=acsinθ1na×c∣=acsinθ1sinθ1=(1)2+(2)2+(1)2ac=6accosθ1=a2c26acsinθ2=32+12+12ab=11abcosθ2=a2b211aba×(b×c)=(a.c)b(a.b)c=(accosθ1)b(abcosθ2)ca×(b×c)={a2c26}b{a2b211}c

Answered by tanmay.chaudhury50@gmail.com last updated on 16/Sep/18

iii)(a×b).(a×c)={(3×−1)+(1×−2)+(1×1)             ={−3−2+1}=−4

iii)(a×b).(a×c)={(3×1)+(1×2)+(1×1)={32+1}=4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com