Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43904 by abdo.msup.com last updated on 17/Sep/18

calculate  ∫_0 ^∞   (((1+x)^(1/3) −1)/(x(1+x)^(2/3) ))dx

calculate0(1+x)131x(1+x)23dx

Commented by maxmathsup by imad last updated on 19/Sep/18

changement (1+x)^(1/3)  =t give 1+x =t^3  ⇒  I =∫_1 ^(+∞)   ((t−1)/((t^3 −1)t^2 ))  (3t^2 )dt = ∫_1 ^(+∞)   (3/(t^2  +t +1))dt  = ∫_1 ^(+∞)     ((3dt)/((t+(1/2))^2  +(3/4))) =_(t+(1/2)=((√3)/2)u)   (4/3) ∫_(√3) ^(+∞)      (3/((1+u^2 )))((√3)/2)du  =2(√3) ∫_(√3) ^(+∞)    (du/(1+u^2 )) =2(√3)[arctan(u)]_(√3) ^(+∞)  =2(√3){(π/2)−(π/3)}=2(√3).(π/6)  I = ((π(√3))/3) .

changement(1+x)13=tgive1+x=t3I=1+t1(t31)t2(3t2)dt=1+3t2+t+1dt=1+3dt(t+12)2+34=t+12=32u433+3(1+u2)32du=233+du1+u2=23[arctan(u)]3+=23{π2π3}=23.π6I=π33.

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Sep/18

1+x=t^3     dx=3t^2 dt  ∫_1 ^∞ ((t−1)/((t^3 −1)(t^2 )))dt  ∫_1 ^∞ (dt/(t^2 (t^2 +t+1)))  (1/(t^2 (t^2 +t+1)))=(a/t)+(b/t^2 )+((ct+d)/(t^2 +t+1))  1=at(t^2 +t+1)+b(t^2 +t+1)+(ct+d)t^2   1=a(t^3 +t^2 +t)+b(t^2 +t+1)+(ct^3 +dt^2 )  1=t^3 (a+c)+t^2 (a+b+d)+t(a+b)+b  b=1  a+c=0  a+1+d=0  a+1=0   a=−1  c=1  −1+1+d=0   d=0  a=−1   b=1   c=1   d=0  ∫_1 ^∞ (dt/(t^2 (t^2 +t+1)))=∫_1 ^∞ ((−1)/t)dt+∫_1 ^∞ (1/t^2 )dt+∫_1 ^∞ (t/(t^2 +t+1))dt  =∣−lnt∣_1 ^∞ +∣(((−1)/t))∣_1 ^∞ +(1/2)∫_1 ^∞ ((2t+1−1)/(t^2 +t+1))dt  =(−ln∞)+1+(1/2)∫_1 ^∞ ((d(t^2 +t+1))/(t^2 +t+1))−(1/2)∫_1 ^∞ (dt/(t^2 +2.t.(1/2)+(1/4)+1−(1/4)))  =(−ln∞)+1+(1/2)∣ln(t^2 +t+1)∣_1 ^∞ −(1/2)∫_1 ^∞  (dt/((t+(1/2))^2 +((((√3)[)/2))^2 ))  =(−ln∞)+1+(1/2)ln(∞)+(1/2)ln3−(1/2)×(1/((√3)/2))∣tan^(−1) (((t+(1/2))/((√3)/2)))∣_1 ^∞   =(−(1/2)ln∞)+1+(1/2)ln3−(1/(√3))((Π/2)−(Π/3))  =(−(1/2)ln∞)+1+(1/2)ln3−(1/(√3))((Π/6))

1+x=t3dx=3t2dt1t1(t31)(t2)dt1dtt2(t2+t+1)1t2(t2+t+1)=at+bt2+ct+dt2+t+11=at(t2+t+1)+b(t2+t+1)+(ct+d)t21=a(t3+t2+t)+b(t2+t+1)+(ct3+dt2)1=t3(a+c)+t2(a+b+d)+t(a+b)+bb=1a+c=0a+1+d=0a+1=0a=1c=11+1+d=0d=0a=1b=1c=1d=01dtt2(t2+t+1)=11tdt+11t2dt+1tt2+t+1dt=∣lnt1+(1t)1+1212t+11t2+t+1dt=(ln)+1+121d(t2+t+1)t2+t+1121dtt2+2.t.12+14+114=(ln)+1+12ln(t2+t+1)1121dt(t+12)2+(3[2)2=(ln)+1+12ln()+12ln312×132tan1(t+1232)1=(12ln)+1+12ln313(Π2Π3)=(12ln)+1+12ln313(Π6)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com