All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 43904 by abdo.msup.com last updated on 17/Sep/18
calculate∫0∞(1+x)13−1x(1+x)23dx
Commented by maxmathsup by imad last updated on 19/Sep/18
changement(1+x)13=tgive1+x=t3⇒I=∫1+∞t−1(t3−1)t2(3t2)dt=∫1+∞3t2+t+1dt=∫1+∞3dt(t+12)2+34=t+12=32u43∫3+∞3(1+u2)32du=23∫3+∞du1+u2=23[arctan(u)]3+∞=23{π2−π3}=23.π6I=π33.
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Sep/18
1+x=t3dx=3t2dt∫1∞t−1(t3−1)(t2)dt∫1∞dtt2(t2+t+1)1t2(t2+t+1)=at+bt2+ct+dt2+t+11=at(t2+t+1)+b(t2+t+1)+(ct+d)t21=a(t3+t2+t)+b(t2+t+1)+(ct3+dt2)1=t3(a+c)+t2(a+b+d)+t(a+b)+bb=1a+c=0a+1+d=0a+1=0a=−1c=1−1+1+d=0d=0a=−1b=1c=1d=0∫1∞dtt2(t2+t+1)=∫1∞−1tdt+∫1∞1t2dt+∫1∞tt2+t+1dt=∣−lnt∣1∞+∣(−1t)∣1∞+12∫1∞2t+1−1t2+t+1dt=(−ln∞)+1+12∫1∞d(t2+t+1)t2+t+1−12∫1∞dtt2+2.t.12+14+1−14=(−ln∞)+1+12∣ln(t2+t+1)∣1∞−12∫1∞dt(t+12)2+(3[2)2=(−ln∞)+1+12ln(∞)+12ln3−12×132∣tan−1(t+1232)∣1∞=(−12ln∞)+1+12ln3−13(Π2−Π3)=(−12ln∞)+1+12ln3−13(Π6)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com