Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43906 by abdo.msup.com last updated on 17/Sep/18

calculate ∫_0 ^∞  ((sin(x))/(sh(2x)))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}\left({x}\right)}{{sh}\left(\mathrm{2}{x}\right)}{dx} \\ $$

Commented by maxmathsup by imad last updated on 20/Sep/18

let A = ∫_0 ^∞   ((sinx)/(sh(2x)))dx ⇒ A = ∫_0 ^∞   ((2sinx)/(e^(2x) −e^(−2x) )) dx  = ∫_0 ^∞    ((e^(−2x)  sinx)/(1−e^(−4x) ))dx =∫_0 ^∞  e^(−2x) (Σ_(n=0) ^∞  e^(−4nx) )sinx dx  = Σ_(n=0) ^∞  ∫_0 ^∞  e^(−(4n+2)x) sinx dx =Σ_(n=0) ^∞  A_n  and A_n =Im(  ∫_0 ^∞ e^(−(4n+2 −i)x)  dx) but  ∫_0 ^∞  e^(−(4n+2 +i)x) dx =[−(1/(4n+2−i)) e^(−(4n+2+i)x) ]_0 ^(+∞) =(1/(4n+2−i))  ((4n+2+i)/((4n+2)^2 +1)) ⇒ A_n = (1/((4n+2)^2  +1)) ⇒ A = Σ_(n=0) ^∞    (1/(4(2n+1)^2  +1))  and this serie can be calculated  by Fourier... be continued...

$${let}\:{A}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sinx}}{{sh}\left(\mathrm{2}{x}\right)}{dx}\:\Rightarrow\:{A}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2}{sinx}}{{e}^{\mathrm{2}{x}} −{e}^{−\mathrm{2}{x}} }\:{dx} \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−\mathrm{2}{x}} \:{sinx}}{\mathrm{1}−{e}^{−\mathrm{4}{x}} }{dx}\:=\int_{\mathrm{0}} ^{\infty} \:{e}^{−\mathrm{2}{x}} \left(\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−\mathrm{4}{nx}} \right){sinx}\:{dx} \\ $$$$=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left(\mathrm{4}{n}+\mathrm{2}\right){x}} {sinx}\:{dx}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{A}_{{n}} \:{and}\:{A}_{{n}} ={Im}\left(\:\:\int_{\mathrm{0}} ^{\infty} {e}^{−\left(\mathrm{4}{n}+\mathrm{2}\:−{i}\right){x}} \:{dx}\right)\:{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left(\mathrm{4}{n}+\mathrm{2}\:+{i}\right){x}} {dx}\:=\left[−\frac{\mathrm{1}}{\mathrm{4}{n}+\mathrm{2}−{i}}\:{e}^{−\left(\mathrm{4}{n}+\mathrm{2}+{i}\right){x}} \right]_{\mathrm{0}} ^{+\infty} =\frac{\mathrm{1}}{\mathrm{4}{n}+\mathrm{2}−{i}} \\ $$$$\frac{\mathrm{4}{n}+\mathrm{2}+{i}}{\left(\mathrm{4}{n}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{1}}\:\Rightarrow\:{A}_{{n}} =\:\frac{\mathrm{1}}{\left(\mathrm{4}{n}+\mathrm{2}\right)^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow\:{A}\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\mathrm{4}\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} \:+\mathrm{1}} \\ $$$${and}\:{this}\:{serie}\:{can}\:{be}\:{calculated}\:\:{by}\:{Fourier}...\:{be}\:{continued}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com