Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43914 by maxmathsup by imad last updated on 17/Sep/18

find ∫    (x/(√(1+cosx)))dx .

findx1+cosxdx.

Commented by maxmathsup by imad last updated on 19/Sep/18

let A = ∫     (x/(√(1+cosx)))dx we have A = ∫   (x/(√(2cos^2 ((x/2)))))dx  = (1/(√2)) ∫    (x/(cos((x/2)))) dx =_((x/2)=t)   (1/(√2)) ∫   ((2t)/(cost))  2dt=2(√2)∫   (t/(cost))dt  =_(tan((t/2)) =u)    2(√2) ∫     ((2arctanu)/((1−u^2 )/(1+u^2 )))  ((2du)/(1+u^2 )) =8(√2) ∫     ((arctan(u))/(1−u^2 )) du  let consider the parametric function f(α) = ∫    ((arctan(αu))/(1−u^2 ))du  we have f^′ (α) = ∫     (u/((1−u^2 )(1+α^2 u^2 )))du let decompose   F(u) =(u/((1−u^2 )(1+α^2 u^2 ))) =(a/(1−u)) +(b/(1+u)) +((cu +d)/(α^2 u^2  +1)) =(u/((1−u)(1+u)(α^2 u^2  +1)))  a =lim_(u→1) (1−u)F(u) =  (1/(2(1 +α^2 )))  b=lim_(u→−1) (1+u)F(u) = ((−1)/(2(1+α^2 ))) ⇒  F(u) = (1/(2(1+α^2 )(1−u))) −(1/(2(1+α^2 )(1+u))) +((cu +d)/(α^2 u^2  +1))  lim_(u→+∞) uF(u) =0 =−a +b +(c/α^2 ) ⇒(c/α^2 ) =a−b =(1/(2(1+α^2 ))) +(1/(2(1+α^2 )))  = (1/(1+α^2 ))  ⇒c =(α^2 /(1+α^2 )) ⇒F(u)= (1/(2(1+α^2 )(1−u))) −(1/(2(1+α^2 )(1+u))) +(((α^2 /(1+α^2 ))u +d)/(1+α^2 u^2 ))  F(o)=0 =d ⇒ ∫  F(u)du =(1/(2(1+α^2 ))) ∫ ((1/(1−u))−(1/(1+u)))du  + (α^2 /(1+α^2 )) ∫      (u/(1+α^2 u^2 )) du but ∫((1/(1−u)) −(1/(1+u)))du =−ln∣1−u^2 ∣ +c_1   (1/(1+α^2 ))∫    ((α^2 u)/(1+α^2 u^2 ))du =(1/(2(1+α^2 )))ln∣1+α^2 u^2 ∣ +c_2  ⇒  f^′ (α) =−((ln∣1−u^2 ∣)/(2(1+α^2 )))  + (1/(2(1+α^2 )))ln∣1+α^2 u^2 ∣ +k  .....be continued...

letA=x1+cosxdxwehaveA=x2cos2(x2)dx=12xcos(x2)dx=x2=t122tcost2dt=22tcostdt=tan(t2)=u222arctanu1u21+u22du1+u2=82arctan(u)1u2duletconsidertheparametricfunctionf(α)=arctan(αu)1u2duwehavef(α)=u(1u2)(1+α2u2)duletdecomposeF(u)=u(1u2)(1+α2u2)=a1u+b1+u+cu+dα2u2+1=u(1u)(1+u)(α2u2+1)a=limu1(1u)F(u)=12(1+α2)b=limu1(1+u)F(u)=12(1+α2)F(u)=12(1+α2)(1u)12(1+α2)(1+u)+cu+dα2u2+1limu+uF(u)=0=a+b+cα2cα2=ab=12(1+α2)+12(1+α2)=11+α2c=α21+α2F(u)=12(1+α2)(1u)12(1+α2)(1+u)+α21+α2u+d1+α2u2F(o)=0=dF(u)du=12(1+α2)(11u11+u)du+α21+α2u1+α2u2dubut(11u11+u)du=ln1u2+c111+α2α2u1+α2u2du=12(1+α2)ln1+α2u2+c2f(α)=ln1u22(1+α2)+12(1+α2)ln1+α2u2+k.....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com