All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 43914 by maxmathsup by imad last updated on 17/Sep/18
find∫x1+cosxdx.
Commented by maxmathsup by imad last updated on 19/Sep/18
letA=∫x1+cosxdxwehaveA=∫x2cos2(x2)dx=12∫xcos(x2)dx=x2=t12∫2tcost2dt=22∫tcostdt=tan(t2)=u22∫2arctanu1−u21+u22du1+u2=82∫arctan(u)1−u2duletconsidertheparametricfunctionf(α)=∫arctan(αu)1−u2duwehavef′(α)=∫u(1−u2)(1+α2u2)duletdecomposeF(u)=u(1−u2)(1+α2u2)=a1−u+b1+u+cu+dα2u2+1=u(1−u)(1+u)(α2u2+1)a=limu→1(1−u)F(u)=12(1+α2)b=limu→−1(1+u)F(u)=−12(1+α2)⇒F(u)=12(1+α2)(1−u)−12(1+α2)(1+u)+cu+dα2u2+1limu→+∞uF(u)=0=−a+b+cα2⇒cα2=a−b=12(1+α2)+12(1+α2)=11+α2⇒c=α21+α2⇒F(u)=12(1+α2)(1−u)−12(1+α2)(1+u)+α21+α2u+d1+α2u2F(o)=0=d⇒∫F(u)du=12(1+α2)∫(11−u−11+u)du+α21+α2∫u1+α2u2dubut∫(11−u−11+u)du=−ln∣1−u2∣+c111+α2∫α2u1+α2u2du=12(1+α2)ln∣1+α2u2∣+c2⇒f′(α)=−ln∣1−u2∣2(1+α2)+12(1+α2)ln∣1+α2u2∣+k.....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com