Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43918 by maxmathsup by imad last updated on 17/Sep/18

1) find f(x) =∫_0 ^x ln(t)ln(1−t)dt   with 0≤x≤1  2) find the value of ∫_0 ^1 ln(t)ln(1−t)dt .

1)findf(x)=0xln(t)ln(1t)dtwith0x12)findthevalueof01ln(t)ln(1t)dt.

Commented by maxmathsup by imad last updated on 19/Sep/18

1) we have for 0<t≤x<1    ln^′ (1−t) =−(1/(1−t)) =−Σ_(n=0) ^∞  t^n  ⇒  ln(1−t) =−Σ_(n=0) ^∞  (1/(n+1))t^(n+1)  =−Σ_(n=1) ^∞   (t^n /n) ⇒  f(x) =−∫_0 ^x  ln(t)(Σ_(n=1) ^∞  (t^n /n))dt =−Σ_(n=1) ^∞  (1/n) ∫_0 ^x t^n ln(t) dt  by parts  A_n (x)= ∫_0 ^x  t^n ln(t)dt =[(1/(n+1))t^(n+1) ln(t)]_0 ^x  −∫_0 ^x  (1/(n+1))t^(n+1)  (dt/t)  =(1/(n+1)) x^(n+1) ln(x) −(1/(n+1))∫_0 ^x   t^n dt = (1/(n+1))x^(n+1) ln(x)−(1/((n+1)^2 )) x^(n+1)  ⇒  f(x) =−Σ_(n=1) ^∞  (1/n){ (1/(n+1)) x^(n+1) ln(x)−(1/((n+1)^2 )) x^(n+1) }  = −Σ_(n=1) ^∞   (1/(n(n+1))) x^(n+1) ln(x) +Σ_(n=1) ^∞   (1/(n(n+1)^2 )) x^(n+1)  =H(x)−K(x)  K(x) =ln(x) Σ_(n=1) ^∞ {(1/n)−(1/(n+1))}x^(n+1)   =ln(x)Σ_(n=1) ^∞   (x^(n+1) /n) −ln(x)Σ_(n=1) ^∞   (x^(n+1) /(n+1))  =xln(x) Σ_(n=1) ^∞  (x^n /n) −ln(x) Σ_(n=2) ^∞   (x^n /n)            =−xln(x)ln(1−x) −ln(x)(−ln∣1−x∣−x)  =−xln(x)ln∣1−x∣+ln(x)(ln∣1−x∣ +x)  =(1−x)ln(x)ln∣1−x∣ +xln(x) .also we have  (d/dx)K(x) =Σ_(n=1) ^∞  (1/(n(n+1))) x^n   =Σ_(n=1) ^∞ {(1/n)−(1/(n+1))}x^n   =Σ_(n=1) ^∞  (x^n /n)  −Σ_(n=1) ^∞  (x^n /(n+1)) =−ln∣1−x∣−Σ_(n=2) ^∞   (x^(n−1) /n)  =−ln∣1−x∣ −(1/x) {Σ_(n=1) ^∞   (x^n /n) −x} =−ln∣1−x∣+(1/x)ln∣1−x) +1  =((1/x)−1)ln∣1−x∣ +1  =(((1−x)ln∣1−x∣)/x) +1 ⇒  K(x) = x + ∫    (((1−x)ln∣1−x∣)/x) dx +k  ....be continued...

1)wehavefor0<tx<1ln(1t)=11t=n=0tnln(1t)=n=01n+1tn+1=n=1tnnf(x)=0xln(t)(n=1tnn)dt=n=11n0xtnln(t)dtbypartsAn(x)=0xtnln(t)dt=[1n+1tn+1ln(t)]0x0x1n+1tn+1dtt=1n+1xn+1ln(x)1n+10xtndt=1n+1xn+1ln(x)1(n+1)2xn+1f(x)=n=11n{1n+1xn+1ln(x)1(n+1)2xn+1}=n=11n(n+1)xn+1ln(x)+n=11n(n+1)2xn+1=H(x)K(x)K(x)=ln(x)n=1{1n1n+1}xn+1=ln(x)n=1xn+1nln(x)n=1xn+1n+1=xln(x)n=1xnnln(x)n=2xnn=xln(x)ln(1x)ln(x)(ln1xx)=xln(x)ln1x+ln(x)(ln1x+x)=(1x)ln(x)ln1x+xln(x).alsowehaveddxK(x)=n=11n(n+1)xn=n=1{1n1n+1}xn=n=1xnnn=1xnn+1=ln1xn=2xn1n=ln1x1x{n=1xnnx}=ln1x+1xln1x)+1=(1x1)ln1x+1=(1x)ln1xx+1K(x)=x+(1x)ln1xxdx+k....becontinued...

Commented by maxmathsup by imad last updated on 19/Sep/18

2) ∫_0 ^1 ln(t)ln(1−t)dt  =lim_(x→0)   ∫_0 ^x  ln(t)ln(1−t)dt  =lim_(x→1) { Σ_(n=1) ^∞  (x^(n+1) /((n+1)^2 )) −Σ_(n=1) ^∞ ((x^(n+1) lnx)/(n(n+1)))} =Σ_(n=1) ^∞   (1/((n+1)^2 ))  =Σ_(n=2) ^∞   (1/n^2 ) =(π^2 /6) −1 .

2)01ln(t)ln(1t)dt=limx00xln(t)ln(1t)dt=limx1{n=1xn+1(n+1)2n=1xn+1lnxn(n+1)}=n=11(n+1)2=n=21n2=π261.

Commented by maxmathsup by imad last updated on 19/Sep/18

∫_0 ^1 ln(t)ln(1−t) dt =lim_(x→1) ∫_0 ^x ln(t)ln(1−t)dt =...

01ln(t)ln(1t)dt=limx10xln(t)ln(1t)dt=...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com