Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43923 by pieroo last updated on 17/Sep/18

A curve passes through the point (1,−11) and its  gradient at any point is ax^2 +b, where a and b are  constants. The tangent to the curve at the point  (2,−16) is parallel to the x-axis. Find  i. the values of a and b  ii. the equation of the curve

Acurvepassesthroughthepoint(1,11)anditsgradientatanypointisax2+b,whereaandbareconstants.Thetangenttothecurveatthepoint(2,16)isparalleltothexaxis.Findi.thevaluesofaandbii.theequationofthecurve

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Sep/18

(dy/dx)=ax^2 +b   y=((ax^3 )/3)+bx+c  −11=(a/3)+b+c  −16=((8a)/3)+2b+c  given  4a+b=0  5=((a−8a)/3)+(−b)  5=((−7a)/3)+4a  5=((5a)/3)    a=3      b=4×−3=−12  −11=(a/3)+b+c  −11=1−12+c    c=0  so a=3    b=−12  curve   y=((ax^3 )/3)+bx+c  y=x^3 −12x

dydx=ax2+by=ax33+bx+c11=a3+b+c16=8a3+2b+cgiven4a+b=05=a8a3+(b)5=7a3+4a5=5a3a=3b=4×3=1211=a3+b+c11=112+cc=0soa=3b=12curvey=ax33+bx+cy=x312x

Commented by pieroo last updated on 18/Sep/18

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com