All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 43939 by abdo.msup.com last updated on 18/Sep/18
findf(ξ)=∫0∞dt1+(t−iξ)2andcalculatef′(ξ)
Commented by maxmathsup by imad last updated on 22/Sep/18
f(ξ)=∫0∞dt(t−ξ)2−i2=∫0∞dt((t−ξ)−i)(t−ξ+i)=12i∫0∞{1t−ξ−i−1t−ξ+i}dt⇒2if(ξ)=∫0∞dtt−ξ−i−∫0∞dtt−ξ+ibut∫dtt−ξ−i=∫t−ξ+i(t−ξ)2+1dt=∫t−ξ(t−ξ)2+1dt+i∫dt(t−ξ)2+1∫t−ξ(t−ξ)2+1dt=12ln{(t−ξ)2+1}+c1∫dt(t−ξ)2+1=t−ξ=u∫du1+u2=arctan(t−ξ)+c2⇒∫dtt−ξ−i=12ln{(t−ξ)2+1}+iarctan(t−ξ)+calso∫dtt−ξ+i=12ln{(t−ξ)2+1}−iarctan(t−ξ)⇒2if(ξ)=2i[arctan(t−ξ)]0+∞=2i{π2+arctan(ξ)}⇒f(ξ)=π2+arctan(ξ)andwehavef′(ξ)=11+ξ2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com