All Questions Topic List
Geometry Questions
Previous in All Question Next in All Question
Previous in Geometry Next in Geometry
Question Number 43944 by Tawa1 last updated on 18/Sep/18
Ifthepoints(−3,5),(4,−2)and(6,2)aretheverticesofatriangle.(i)Findtheequationoftheperpendicularbisectorofthesides(ii)Findthecoordinateofthecircumcenter.(Thecircumcenterofatriangleisthepointofintersectionoftheperpendicularbisectoroftheside(iii)Findtheradiusofthecircumcircle.
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Sep/18
A(−3,5)B(4,−2)C(6,2)AB=(y−5)=−2−54+3(x+3)7y−35=−7x−217y+7x=14midofAB−3+42,5−22(12,32)perpendiculartoABandpassingthrough(12,32)isperpdndiculRbisectorofABnowslopeofABcalculation7y+7x=14y=−x+2m=−1m1×m2=−1(−1)×m2=−1m2=1so⊥bisectorofABis(y−32)=1(x−12)2y−3=2x−12y−2x=2y−x=1similarwaycalculateother⊥bisectorofBCB(4,−2)C(6,2)BCeqnisy+2=2+26−4(x−4)2y+4=4x−162y−4x+20=0y−2x+10=0slope=2m1×m2=−12×m2=−1m2=−12midpointofBC4+62′−2+22=(5,0)eqnof⊥bisectorofBCisy−0=−12(x−5)2y+x−5=0intersectingpointbetweeny−x=1and2y+x−5=0isthecentreofcircley−x=12y+x=53y=6y=2x=1socentreifcircleis(1,2)eqn(x−1)2+(y−2)2=r2r=distancebetween(1,2)and(−3,5)←Apointr=(−3−1)2+(5−2)2=16+9=5soeqncircle(x−1)2+(y−2)2=52anotherwayii)eqnofcircleisx2+y2+2gx+2fy+c=0passesthrough(−3,5)(4,−2)and(6,2)9+25−6g+10f+c=0←eqn116+4+8g−4f+c=0←eqn236+4+12g+4f+c=0←eqn3fcircle34−6g+10f+c=020+8g−4f+c=040+12g+4f+c=0eqn1−eqn214−14g+14f=01−g+f=0eqn2−eqn3−20−4g−8f=05+g+2f=0solve5+g+2f=01−g+f=06+3f=0f=−2g=−1centreis(−g,−f)=(1,2)putg=−1anff=−2ineqn1to[findc34−6g+10f+c=034−6(−1)+10(−2)+c=034+6−20+c=0c=−20radiusr=g2+f2−cr=1+4+20=5eqncircle(x−1)2+(y−2)2=52
Commented by Tawa1 last updated on 18/Sep/18
Godblessyousir.Ireallyappreciate
Terms of Service
Privacy Policy
Contact: info@tinkutara.com