All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 44002 by maxmathsup by imad last updated on 19/Sep/18
calculateI=∫0π4arctanx1+xandJ=∫0π4arctanx1−xdx
Commented by maxmathsup by imad last updated on 24/Sep/18
letf(α)=∫0π4arctan(αx)1+xdx⇒I=f(1)wehavef′(α)=∫0π4xdx(1+x)(1+α2x2)=αx=t∫0απ4tdtα(1+tα)(1+t2)=∫0απ4tdt(t+α)(t2+1)letdecomposeF(t)=t(t+α)(t2+1)F(t)=at+α+bt+ct2+1wehavea=limt→−α(t+α)F(t)=−α1+α2limt→+∞tF(t)=0=a+b⇒b=α1+α2⇒F(t)=−α(1+α2)(t+α)+α1+α2t+c1+t2F(0)=0=−α(1+α2)α+c⇒c=11+α2⇒F(t)=−α(1+α2)(t+α)+11+α2αt+1t2+1⇒f′(α)=−α1+α2∫0απ4dtt+α+11+α2∫0απ4αt+1t2+1dtbut∫0απ4dtt+α=[ln∣t+α∣]0απ4=ln∣απ4+α∣−ln∣α∣=ln∣1+π4∣∫0απ4αt+1t2+1dt=α2[ln(t2+1)]0απ4+arctan(απ4)=α2ln(1+α2π216)+arctan(απ4)⇒f′(α)=−α1+α2ln(1+π4)+α2(1+α2)ln(1+α2π216)+11+α2arctan(απ4)⇒f(α)=−ln(1+π4)∫0αx1+x2dx+12∫0αx1+x2ln(1+x2π216)dx+∫0α11+x2arctan(πx4)dx+c(c=f(0)=0)⇒f(1)=−ln(1+π4)∫01x1+x2dx+12∫01x1+x2ln(1+x2π216)dx+∫01arctan(πx4)1+x2dx....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com