Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 44002 by maxmathsup by imad last updated on 19/Sep/18

calculate  I = ∫_0 ^(π/4)   ((arctanx)/(1+x))   and J = ∫_0 ^(π/4)  ((arctanx)/(1−x))dx

calculateI=0π4arctanx1+xandJ=0π4arctanx1xdx

Commented by maxmathsup by imad last updated on 24/Sep/18

let f(α) =∫_0 ^(π/4)   ((arctan(αx))/(1+x))dx ⇒I =f(1) we have  f^′ (α) = ∫_0 ^(π/4)     ((x dx)/((1+x)(1+α^2 x^2 ))) =_(αx =t)       ∫_0 ^((απ)/4)      ((tdt)/(α(1+(t/α))(1+t^2 )))  = ∫_0 ^((απ)/4)    ((tdt)/((t+α)(t^2  +1))) let decompose F(t) = (t/((t+α)(t^2  +1)))  F(t) = (a/(t+α)) +((bt +c)/(t^2  +1))  we have a=lim_(t→−α) (t+α)F(t)=((−α)/(1+α^2 ))  lim_(t→+∞) t F(t) =0 =a+b ⇒b =(α/(1+α^2 )) ⇒F(t)=−(α/((1+α^2 )(t+α))) +(((α/(1+α^2 ))t +c)/(1+t^2 ))  F(0)=0 = −(α/((1+α^2 )α)) +c ⇒c =(1/(1+α^2 )) ⇒  F(t) = −(α/((1+α^2 )(t+α))) +(1/(1+α^2 ))  ((αt +1)/(t^2  +1)) ⇒  f^′ (α) =((−α)/(1+α^2 )) ∫_0 ^((απ)/4)     (dt/(t+α))  +(1/(1+α^2 )) ∫_0 ^((απ)/4)   ((αt +1)/(t^(2 ) +1))dt  but  ∫_0 ^((απ)/4)   (dt/(t+α)) =[ln∣t+α∣]_0 ^((απ)/4)  =ln∣((απ)/4)+α∣−ln∣α∣ =ln∣1+(π/4)∣   ∫_0 ^((απ)/4)    ((αt +1)/(t^2  +1)) dt =(α/2)[ln(t^2  +1)]_0 ^((απ)/4)   +arctan(((απ)/4))  =(α/2)ln(1+((α^2 π^2 )/(16))) +arctan(((απ)/4)) ⇒  f^′ (α) =((−α)/(1+α^2 ))ln(1+(π/4)) + (α/(2(1+α^2 )))ln(1+((α^2 π^2 )/(16))) +(1/(1+α^2 ))arctan(((απ)/4)) ⇒  f(α) =−ln(1+(π/4)) ∫_0 ^α    (x/(1+x^2 ))dx +(1/2) ∫_0 ^α  (x/(1+x^2 ))ln(1+((x^2 π^2 )/(16)))dx +∫_0 ^α  (1/(1+x^2 ))arctan(((πx)/4))dx  +c ( c=f(0)=0) ⇒  f(1) =−ln(1+(π/4)) ∫_0 ^1   (x/(1+x^2 ))dx +(1/2) ∫_0 ^1   (x/(1+x^2 ))ln(1+((x^2 π^2 )/(16)))dx  +∫_0 ^1   ((arctan(((πx)/4)))/(1+x^2 ))dx ....be continued...

letf(α)=0π4arctan(αx)1+xdxI=f(1)wehavef(α)=0π4xdx(1+x)(1+α2x2)=αx=t0απ4tdtα(1+tα)(1+t2)=0απ4tdt(t+α)(t2+1)letdecomposeF(t)=t(t+α)(t2+1)F(t)=at+α+bt+ct2+1wehavea=limtα(t+α)F(t)=α1+α2limt+tF(t)=0=a+bb=α1+α2F(t)=α(1+α2)(t+α)+α1+α2t+c1+t2F(0)=0=α(1+α2)α+cc=11+α2F(t)=α(1+α2)(t+α)+11+α2αt+1t2+1f(α)=α1+α20απ4dtt+α+11+α20απ4αt+1t2+1dtbut0απ4dtt+α=[lnt+α]0απ4=lnαπ4+αlnα=ln1+π40απ4αt+1t2+1dt=α2[ln(t2+1)]0απ4+arctan(απ4)=α2ln(1+α2π216)+arctan(απ4)f(α)=α1+α2ln(1+π4)+α2(1+α2)ln(1+α2π216)+11+α2arctan(απ4)f(α)=ln(1+π4)0αx1+x2dx+120αx1+x2ln(1+x2π216)dx+0α11+x2arctan(πx4)dx+c(c=f(0)=0)f(1)=ln(1+π4)01x1+x2dx+1201x1+x2ln(1+x2π216)dx+01arctan(πx4)1+x2dx....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com