Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 44028 by pieroo last updated on 20/Sep/18

Show that cos^2 x = (1/2)(1+cos2x)

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{cos}^{\mathrm{2}} \mathrm{x}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{cos2x}\right) \\ $$

Commented by maxmathsup by imad last updated on 20/Sep/18

by scalar product we can prove that cos(a+b)=cos a cosb −sina sinb  let take a=b=x ⇒cos(2x)=cos^2 x−sin^2 x =cos^2 x −(1−cos^2 x)   =2 cos^2 x −1 ⇒1+cos(2x)=2cos^2 x ⇒cos^2 x =((1+cos(2x))/2) .

$${by}\:{scalar}\:{product}\:{we}\:{can}\:{prove}\:{that}\:{cos}\left({a}+{b}\right)={cos}\:{a}\:{cosb}\:−{sina}\:{sinb} \\ $$$${let}\:{take}\:{a}={b}={x}\:\Rightarrow{cos}\left(\mathrm{2}{x}\right)={cos}^{\mathrm{2}} {x}−{sin}^{\mathrm{2}} {x}\:={cos}^{\mathrm{2}} {x}\:−\left(\mathrm{1}−{cos}^{\mathrm{2}} {x}\right)\: \\ $$$$=\mathrm{2}\:{cos}^{\mathrm{2}} {x}\:−\mathrm{1}\:\Rightarrow\mathrm{1}+{cos}\left(\mathrm{2}{x}\right)=\mathrm{2}{cos}^{\mathrm{2}} {x}\:\Rightarrow{cos}^{\mathrm{2}} {x}\:=\frac{\mathrm{1}+{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}\:. \\ $$

Answered by MJS last updated on 20/Sep/18

f(x)=cos^2  x  f(0)=1  f(45°)=(1/2)  f(90°)=0  f(135°)=(1/2)  f(180°)=1  f(225°)=(1/2)  f(270°)=0  f(315°)=(1/2)  so we have a periodic function  period=180° or π  minima=0; maxima=1  looks like a cosinus twice as fast and half as  wide, shifted up so the min&max are 0&1  instead of ±(1/2)  twice as fast =cos 2x  half as wide=(1/2)cos 2x  shifted up=(1/2)+(1/2)cos 2x =(1/2)(1+cos 2x)

$${f}\left({x}\right)=\mathrm{cos}^{\mathrm{2}} \:{x} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${f}\left(\mathrm{45}°\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${f}\left(\mathrm{90}°\right)=\mathrm{0} \\ $$$${f}\left(\mathrm{135}°\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${f}\left(\mathrm{180}°\right)=\mathrm{1} \\ $$$${f}\left(\mathrm{225}°\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${f}\left(\mathrm{270}°\right)=\mathrm{0} \\ $$$${f}\left(\mathrm{315}°\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{have}\:\mathrm{a}\:\mathrm{periodic}\:\mathrm{function} \\ $$$$\mathrm{period}=\mathrm{180}°\:\mathrm{or}\:\pi \\ $$$$\mathrm{minima}=\mathrm{0};\:\mathrm{maxima}=\mathrm{1} \\ $$$$\mathrm{looks}\:\mathrm{like}\:\mathrm{a}\:\mathrm{cosinus}\:\mathrm{twice}\:\mathrm{as}\:\mathrm{fast}\:\mathrm{and}\:\mathrm{half}\:\mathrm{as} \\ $$$$\mathrm{wide},\:\mathrm{shifted}\:\mathrm{up}\:\mathrm{so}\:\mathrm{the}\:\mathrm{min\&max}\:\mathrm{are}\:\mathrm{0\&1} \\ $$$$\mathrm{instead}\:\mathrm{of}\:\pm\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{twice}\:\mathrm{as}\:\mathrm{fast}\:=\mathrm{cos}\:\mathrm{2}{x} \\ $$$$\mathrm{half}\:\mathrm{as}\:\mathrm{wide}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{2}{x} \\ $$$$\mathrm{shifted}\:\mathrm{up}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{2}{x}\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}{x}\right) \\ $$

Commented by MJS last updated on 20/Sep/18

I thought it might be of interest to show it  without using any formula, because the  given equation is considered to be a formula  itself...

$$\mathrm{I}\:\mathrm{thought}\:\mathrm{it}\:\mathrm{might}\:\mathrm{be}\:\mathrm{of}\:\mathrm{interest}\:\mathrm{to}\:\mathrm{show}\:\mathrm{it} \\ $$$$\mathrm{without}\:\mathrm{using}\:\mathrm{any}\:\mathrm{formula},\:\mathrm{because}\:\mathrm{the} \\ $$$$\mathrm{given}\:\mathrm{equation}\:\mathrm{is}\:\mathrm{considered}\:\mathrm{to}\:\mathrm{be}\:\mathrm{a}\:\mathrm{formula} \\ $$$$\mathrm{itself}... \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 20/Sep/18

  RHS  cos(α+β)=cosαcosβ−sinαsinβ  cos(x+x)=cosxcosx−sinxsinx  coz2x=cos^2 x−(1−cos^2 x)  cos2x=2cos^2 x−1  ((1+cos2x)/2)=cos^2 x

$$ \\ $$$${RHS} \\ $$$${cos}\left(\alpha+\beta\right)={cos}\alpha{cos}\beta−{sin}\alpha{sin}\beta \\ $$$${cos}\left({x}+{x}\right)={cosxcosx}−{sinxsinx} \\ $$$${coz}\mathrm{2}{x}={cos}^{\mathrm{2}} {x}−\left(\mathrm{1}−{cos}^{\mathrm{2}} {x}\right) \\ $$$${cos}\mathrm{2}{x}=\mathrm{2}{cos}^{\mathrm{2}} {x}−\mathrm{1} \\ $$$$\frac{\mathrm{1}+{cos}\mathrm{2}{x}}{\mathrm{2}}={cos}^{\mathrm{2}} {x} \\ $$

Answered by $@ty@m last updated on 20/Sep/18

We have  cos (a+b)=cos a.cos b−sin a.sin b  Put a=b=x  cos 2x=cos^2 x−sin^2 x               =cos^2 x−(1−cos ^2 x)               =2cos^2 x−1  ⇒2cos^2 x=1+cos 2x

$${We}\:{have} \\ $$$$\mathrm{cos}\:\left({a}+{b}\right)=\mathrm{cos}\:{a}.\mathrm{cos}\:{b}−\mathrm{sin}\:{a}.\mathrm{sin}\:{b} \\ $$$${Put}\:{a}={b}={x} \\ $$$$\mathrm{cos}\:\mathrm{2}{x}=\mathrm{cos}\:^{\mathrm{2}} {x}−\mathrm{sin}\:^{\mathrm{2}} {x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{cos}\:^{\mathrm{2}} {x}−\left(\mathrm{1}−\mathrm{cos}\:\:^{\mathrm{2}} {x}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2cos}\:^{\mathrm{2}} {x}−\mathrm{1} \\ $$$$\Rightarrow\mathrm{2cos}\:^{\mathrm{2}} {x}=\mathrm{1}+\mathrm{cos}\:\mathrm{2}{x} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com