Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 44201 by abdo.msup.com last updated on 23/Sep/18

let f(x)=∫_0 ^1  ((ln(1+xt^2 ))/t^2 )dt  with x ∈R  1) find a explicit form of f(x)  2)calculate ∫_0 ^1   ((ln(1+t^2 ))/t^2 )dt  3)calculate ∫_0 ^1  ((ln(1+2t^2 ))/t^2 )dt  4) calculate ∫_0 ^1  ((ln(1−t^2 ))/t^2 )dt

letf(x)=01ln(1+xt2)t2dtwithxR1)findaexplicitformoff(x)2)calculate01ln(1+t2)t2dt3)calculate01ln(1+2t2)t2dt4)calculate01ln(1t2)t2dt

Commented by maxmathsup by imad last updated on 25/Sep/18

1) we have f^′ (x) = ∫_0 ^1   (t^2 /(t^2 (1+xt^2 )))dt = ∫_0 ^1    (dt/(1 +xt^2 ))  case 1  x>0 changement t(√x)=u give  f^′ (x)= ∫_0 ^(√x)       (1/(1+u^2 )) (du/(√x))  =(1/(√x)) arctan((√x)) ⇒ f(x) =∫_0 ^x    ((arctan((√t)))/(√t)) dt +c but c=f(0)=0 ⇒  f(x) =∫_0 ^x    ((actan((√t)))/(√t))dt =_((√t)=u)     ∫_0 ^(√x)    ((arctan(u))/u) (2u)du =2 ∫_0 ^(√x)  arctanu du  by parts f(x) =2{  [u arctanu]_0 ^(√x)  −∫_0 ^(√x) (u/(1+u^2 ))du}  =2{(√x)arctan((√x)) −[(1/2)ln(1+u^2 )]_0 ^(√x) }  =2{ (√x)arctan((√x)) −(1/2)ln(1+x)} ⇒f(x)=2(√x)arctan((√x))−ln(1+x)  case 2 x<0 ⇒f^′ (x)= ∫_0 ^1   (dt/(1−(−x)t^2 )) =_(t(√(−x))=u)    ∫_0 ^(√(−x))     (1/(1−u^2 )) (du/(√(−x)))  =(1/(2(√(−x)))){ ∫_0 ^(√(−x))  { (1/(1−u)) +(1/(1+u))}du} = (1/(2(√(−x))))[ln∣((1+u)/(1−u))∣]_0 ^(√(−x))  ⇒  f^′ (x) = (1/(2(√(−x))))ln∣((1+(√(−x)))/(1−(√(−x))))∣ ⇒f(x) = ∫_x ^0   (1/(2(√(−t))))ln∣((1+(√(−t)))/(1−(√(−t))))∣ +c  c=f(0) =0 ⇒f(x)= ∫_x ^0   (1/(2(√(−t))))ln∣((1+(√(−t)))/(1−(√(−t))))∣ dt  changement (√(−t))=u give f(x) = ∫_(√(−x)) ^0    (1/(2u))ln∣((1+u)/(1−u))∣(−2u)du  = ∫_0 ^(√(−x)) ln∣1+u∣du−∫_0 ^(√(−x)) ln∣1−u∣ du  =∫_0 ^(√(−x)) ln(1+u)du −∫_0 ^(√(−x)) ln(1−u)du  but  ∫_0 ^(√(−x)) ln(1+u)du =_(1+u =α)   ∫_1 ^(1+(√(−x))) ln(α)dα  [αln(α)−α]_1 ^(1+(√(−x)))  =(1+(√(−x)))ln(1+(√(−x)))−(1+(√(−x))) +1  =(1+(√(−x)))ln(1+(√(−x))) −(√(−x)).also  ∫_0 ^(√(−x)) ln(1−u)du =_(1−u =α)   −∫_1 ^(1−(√(−x)))  ln(α)dα  =−[αln(α) −α]_1 ^(1−(√(−x)))   =−{(1−(√(−x)))ln(1−(√(−x)))−(1−(√(−x))) +1}  =−(1−(√(−x)))ln(1−(√(−x))) −(√(−x)) ⇒  f(x)=(1+(√(−x)))ln(1+(√(−x))) +(1−(√(−x)))ln(1−(√(−x))).

1)wehavef(x)=01t2t2(1+xt2)dt=01dt1+xt2case1x>0changementtx=ugivef(x)=0x11+u2dux=1xarctan(x)f(x)=0xarctan(t)tdt+cbutc=f(0)=0f(x)=0xactan(t)tdt=t=u0xarctan(u)u(2u)du=20xarctanudubypartsf(x)=2{[uarctanu]0x0xu1+u2du}=2{xarctan(x)[12ln(1+u2)]0x}=2{xarctan(x)12ln(1+x)}f(x)=2xarctan(x)ln(1+x)case2x<0f(x)=01dt1(x)t2=tx=u0x11u2dux=12x{0x{11u+11+u}du}=12x[ln1+u1u]0xf(x)=12xln1+x1xf(x)=x012tln1+t1t+cc=f(0)=0f(x)=x012tln1+t1tdtchangementt=ugivef(x)=x012uln1+u1u(2u)du=0xln1+udu0xln1udu=0xln(1+u)du0xln(1u)dubut0xln(1+u)du=1+u=α11+xln(α)dα[αln(α)α]11+x=(1+x)ln(1+x)(1+x)+1=(1+x)ln(1+x)x.also0xln(1u)du=1u=α11xln(α)dα=[αln(α)α]11x={(1x)ln(1x)(1x)+1}=(1x)ln(1x)xf(x)=(1+x)ln(1+x)+(1x)ln(1x).

Commented by maxmathsup by imad last updated on 25/Sep/18

2)  we have f(x) =∫_0 ^1  ((ln(1+xt^2 ))/t^2 ) dt ⇒ ∫_0 ^1   ((ln(1+t^2 ))/t^2 )dt  =f(1) = 2 arctan(1)−ln(2) =((2π)/4) −ln(2) =(π/2) −ln(2) .

2)wehavef(x)=01ln(1+xt2)t2dt01ln(1+t2)t2dt=f(1)=2arctan(1)ln(2)=2π4ln(2)=π2ln(2).

Commented by maxmathsup by imad last updated on 25/Sep/18

∫_0 ^1    ((ln(1+2t^2 ))/t^2 )dt =f(2) = 2 (√2)arctan((√2)) −ln(3).

01ln(1+2t2)t2dt=f(2)=22arctan(2)ln(3).

Commented by maxmathsup by imad last updated on 25/Sep/18

4) ∫_0 ^1  ((ln(1−t^2 ))/t^2 )dt =f(−1) =2ln(2) .

4)01ln(1t2)t2dt=f(1)=2ln(2).

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Sep/18

(df/dx)=∫_0 ^1 (∂/∂x)×{((ln(1+xt^2 ))/t^2 )}dt  =∫_0 ^1 (1/t^2 )×((0+t^2 )/(1+xt^2 )) dt  =∫_0 ^1 (dt/(x((1/x)+t^2 )))  =(1/x)×(1/(1/((√x) )))∣tan^(−1) ((t/(1/(√x_  ))))∣_0 ^1   =(1/((√x) ))tan^(−1) ((√x) )  df(x)=((tan^(−1) ((√x) ))/((√x) ))dx  f(x)=∫((tan^(−1) ((√x) ))/((√x) ))dx  y^2 =x  dx=2ydy  ∫((tan^(−1) (y) 2ydy)/y)  =2∫tan^(−1) (y)dy  =2ytan^(−1) (y)−∫(2/(1+y^2 ))×ydy  =2ytan^(−1) (y)−ln(1+y^2 )+c  =2(√x) tan^(−1) ((√x) )−ln(1+x)+c

dfdx=01x×{ln(1+xt2)t2}dt=011t2×0+t21+xt2dt=01dtx(1x+t2)=1x×11xtan1(t1x)01=1xtan1(x)df(x)=tan1(x)xdxf(x)=tan1(x)xdxy2=xdx=2ydytan1(y)2ydyy=2tan1(y)dy=2ytan1(y)21+y2×ydy=2ytan1(y)ln(1+y2)+c=2xtan1(x)ln(1+x)+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com