Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 44202 by abdo.msup.com last updated on 23/Sep/18

find  f(a) =∫_0 ^∞   (dx/(x^3  +a^3 )) with a>0  2)find g(a)=∫_0 ^∞   (dx/((x^3  +a^3 )^2 ))  3)find the value of ∫_0 ^∞  (dx/((1+x^3 )^2 ))  4)find the value of ∫_0 ^∞   (dx/(8x^3  +1))

findf(a)=0dxx3+a3witha>0 2)findg(a)=0dx(x3+a3)2 3)findthevalueof0dx(1+x3)2 4)findthevalueof0dx8x3+1

Commented bymaxmathsup by imad last updated on 25/Sep/18

we have f(a) =∫_0 ^∞      (dx/(x^3  +a^3 )) ⇒f^′ (a) =−∫_0 ^∞    ((3a^2 )/((x^3  +a^3 )^2 ))dx ⇒  ∫_0 ^∞      (dx/((x^3  +a^3 )^2 )) =((−1)/(3a^2 )) f^′ (a)  but f(a) =((2π)/(3(√3))) a^(−2)  ⇒f^′ (a) =−((4π)/(3(√3))) a^(−3)  ⇒  ∫_0 ^∞      (dx/((x^3  +a^3 )^2 )) = ((−1)/(3a^2 )) (−((4π)/(3(√3)a^3 ))) = ((4π)/(9a^5 (√3))) .

wehavef(a)=0dxx3+a3f(a)=03a2(x3+a3)2dx 0dx(x3+a3)2=13a2f(a)butf(a)=2π33a2f(a)=4π33a3 0dx(x3+a3)2=13a2(4π33a3)=4π9a53.

Commented bymaxmathsup by imad last updated on 25/Sep/18

let take a=1 ⇒ ∫_0 ^∞   (dx/((x^3  +1)^2 )) = ((4π)/(9(√3))) .

lettakea=10dx(x3+1)2=4π93.

Commented bymaxmathsup by imad last updated on 25/Sep/18

1) changement x =at give f(a) = ∫_0 ^∞   ((adt)/(a^3 (1+t^3 ))) =(1/a^2 ) ∫_0 ^∞   (dt/(t^3  +1))  let I =∫_0 ^∞    (dt/(t^3  +1)) ⇒ I =_(t=(1/u))      −∫_0 ^∞    (1/((1/u^3 ) +1)) ((−du)/u^2 ) =∫_0 ^∞    (du/((1/u) +u^2 ))  =∫_0 ^∞   (u/(u^(3 )  +1)) du ⇒ 2I = ∫_0 ^∞     (dt/(t^3  +1)) +∫_0 ^∞    (t/(t^3  +1))dt =∫_0 ^∞   ((t+1)/(t^3  +1))dt  =∫_0 ^∞    (dt/(t^2 −t +1)) = ∫_0 ^∞      (dt/((t−(1/2))^2  +(3/4))) =_(t−(1/2)=((√3)/2)u)   (4/3)∫_(−(1/(√3))) ^(+∞)       (1/(1+u^2 )) ((√3)/2)du  = (2/(√3))  ∫_(−(1/(√3))) ^(+∞)      (du/(1+u^2 )) =(2/(√3)) [arctan(u)]_(−((1 )/(√3))) ^(+∞)      =(2/(√3)){(π/2) +(π/6)}=(2/(√3)) .((2π)/3) =((4π)/(3(√3)))  ⇒ I = ((2π)/(3(√3))) ⇒f(a) = ((2π)/(3a^2 (√3))) .

1)changementx=atgivef(a)=0adta3(1+t3)=1a20dtt3+1 letI=0dtt3+1I=t=1u011u3+1duu2=0du1u+u2 =0uu3+1du2I=0dtt3+1+0tt3+1dt=0t+1t3+1dt =0dtt2t+1=0dt(t12)2+34=t12=32u4313+11+u232du =2313+du1+u2=23[arctan(u)]13+=23{π2+π6}=23.2π3=4π33 I=2π33f(a)=2π3a23.

Commented bymaxmathsup by imad last updated on 25/Sep/18

we have ∫_0 ^∞    (dx/(x^3  +a^3 )) = ((2π)/(3a^2 (√3)))  let take a=(1/2) ⇒   ∫_0 ^∞      (dx/(x^3  +(1/8))) = ((2π)/(3 (1/4)(√3))) = ((8π)/(3(√3))) ⇒ 8 ∫_0 ^∞    (dx/(8x^3  +1)) =((8π)/(3(√3))) ⇒  ∫_0 ^∞      (dx/(8x^3  +1)) = (π/(3(√3))) .

wehave0dxx3+a3=2π3a23lettakea=12 0dxx3+18=2π3143=8π3380dx8x3+1=8π33 0dx8x3+1=π33.

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Sep/18

1)∫_0 ^∞ (dx/(x^3 +a^3 ))  x^3 =a^3 tan^2 α  3x^2 dx=a^3 ×2tanαsec^2 αdα  dx=((2a^3 )/3)×((tanαsec^2 α)/((a^3 tan^2 α)^(2/3) ))dα=((2a)/3)×((sec^2 α)/(tan^(1/3) α))dα    ∫_0 ^(π/2) ((2a)/3)×((sec^2 α)/(tan^(1/3) α))×(1/(a^3 (tan^2 α+1)))×dα  (2/(3a^2 ))∫_0 ^(π/2) (dα/(tan^(1/3) α))  (2/(3a^2 ))∫_0 ^(π/2) sin^((−1)/3) αcos^(1/3) αdα  using gamma beta function...  ∫_0 ^(π/2) sin^(2p−1) αcos^(2q−1) αdα=((⌈(p)⌈q))/(2(⌈p+q)))  here 2p−1=((−1)/3)  2p=(2/3)  p=(1/3)  2q−1=(1/3)  2q=(4/3)  q=(2/3)  so ans is (2/(3a^2 ))×((⌈((1/3))×⌈((2/3)))/(2⌈((1/3)+(2/3))))  =(1/(3a^2 ))×((⌈((1/3))×⌈(1−(1/3)))/1)=(1/(3a^2 ))×(π/(sin((π/3))))=((2π)/(3(√3) a^2 ))  2)∫_0 ^∞ (dx/((x^3 +a^3 )^2 ))=∫_0 ^(π/2) ((2a)/3)×((sec^2 α)/(tan^(1/3) α))×(1/({a^3 (tan^2 α+1)}^2 ))dα  ∫_0 ^(π/2) ((2a)/3)×((sec^2 α)/(tan^(1/3) α))×(1/(a^6 ×sec^4 α))dα  (2/(3a^5 ))∫_0 ^(π/2) ((cos^(1/3) α)/(sin^(1/3) α))×cos^2 αdα  (2/(3a^5 ))∫_0 ^(π/2) sin^((−1)/3) αcos^(7/3) αdα  2p−1=((−1)/3)  p=(1/3)    2q−1=(7/3)  2q=((10)/3)   q=(5/3)  (2/(3a^5 ))×((⌈((1/3))×⌈((5/3)))/(2⌈(((5+1)/3))))=(1/(3a^5 ))×((⌈((1/3))×⌈((2/3)+1))/(1×⌈(1)))  =(1/(3a^5 ))×((⌈((1/3))×(2/3)×⌈((2/3)))/1)  =(2/(9a^5 ))×⌈((1/3))×⌈(1−(1/3))=(2/(9a^5 ))×(π/(sin((π/3))))=(4/(9a^5 ))×(π/(√3))

1)0dxx3+a3x3=a3tan2α 3x2dx=a3×2tanαsec2αdα dx=2a33×tanαsec2α(a3tan2α)23dα=2a3×sec2αtan13αdα 0π22a3×sec2αtan13α×1a3(tan2α+1)×dα 23a20π2dαtan13α 23a20π2sin13αcos13αdα usinggammabetafunction... 0π2sin2p1αcos2q1αdα=(p)q)2(p+q) here2p1=132p=23p=13 2q1=132q=43q=23 soansis23a2×(13)×(23)2(13+23) =13a2×(13)×(113)1=13a2×πsin(π3)=2π33a2 2)0dx(x3+a3)2=0π22a3×sec2αtan13α×1{a3(tan2α+1)}2dα 0π22a3×sec2αtan13α×1a6×sec4αdα 23a50π2cos13αsin13α×cos2αdα 23a50π2sin13αcos73αdα 2p1=13p=13 2q1=732q=103q=53 23a5×(13)×(53)2(5+13)=13a5×(13)×(23+1)1×(1) =13a5×(13)×23×(23)1 =29a5×(13)×(113)=29a5×πsin(π3)=49a5×π3

Commented bytanmay.chaudhury50@gmail.com last updated on 25/Sep/18

Commented bytanmay.chaudhury50@gmail.com last updated on 25/Sep/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com