Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 4423 by Rasheed Soomro last updated on 24/Jan/16

Determine f(t) such that ∀ t∈Z  x^2 =8x+f(t) has integer-solution.

$$\mathrm{Determine}\:\mathrm{f}\left(\mathrm{t}\right)\:\mathrm{such}\:\mathrm{that}\:\forall\:\mathrm{t}\in\mathbb{Z} \\ $$$$\mathrm{x}^{\mathrm{2}} =\mathrm{8x}+\mathrm{f}\left(\mathrm{t}\right)\:\mathrm{has}\:\mathrm{integer}-\mathrm{solution}. \\ $$

Commented by Yozzii last updated on 24/Jan/16

Try f(t)=c; c is a real constant.  x^2 −8x−c=0  x=((8±(√(64+4c)))/2)  x=((8±2(√(16+c)))/2)  x=4±(√(16+c))  For x∈Z⊂R⇒16+c≥0 ∧ 16+c=n^2   for ∀ n∈Z^+ +{0}. Hence f(t)=c  for integer solutions x to exist for  x^2 =8x+f(t) if c=n^2 −16 for ∀n∈Z.    Checking: x^2 =8x+n^2 −16  x^2 −8x+16−n^2 =0  ⇒ x=((8±(√(64−64+4n^2 )))/2)  x=((8±2n)/2)  x=4±n∈Z.

$${Try}\:{f}\left({t}\right)={c};\:{c}\:{is}\:{a}\:{real}\:{constant}. \\ $$$${x}^{\mathrm{2}} −\mathrm{8}{x}−{c}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{8}\pm\sqrt{\mathrm{64}+\mathrm{4}{c}}}{\mathrm{2}} \\ $$$${x}=\frac{\mathrm{8}\pm\mathrm{2}\sqrt{\mathrm{16}+{c}}}{\mathrm{2}} \\ $$$${x}=\mathrm{4}\pm\sqrt{\mathrm{16}+{c}} \\ $$$${For}\:{x}\in\mathbb{Z}\subset\mathbb{R}\Rightarrow\mathrm{16}+{c}\geqslant\mathrm{0}\:\wedge\:\mathrm{16}+{c}={n}^{\mathrm{2}} \\ $$$${for}\:\forall\:{n}\in\mathbb{Z}^{+} +\left\{\mathrm{0}\right\}.\:{Hence}\:{f}\left({t}\right)={c} \\ $$$${for}\:{integer}\:{solutions}\:{x}\:{to}\:{exist}\:{for} \\ $$$${x}^{\mathrm{2}} =\mathrm{8}{x}+{f}\left({t}\right)\:{if}\:{c}={n}^{\mathrm{2}} −\mathrm{16}\:{for}\:\forall{n}\in\mathbb{Z}. \\ $$$$ \\ $$$${Checking}:\:{x}^{\mathrm{2}} =\mathrm{8}{x}+{n}^{\mathrm{2}} −\mathrm{16} \\ $$$${x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{16}−{n}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:{x}=\frac{\mathrm{8}\pm\sqrt{\mathrm{64}−\mathrm{64}+\mathrm{4}{n}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$${x}=\frac{\mathrm{8}\pm\mathrm{2}{n}}{\mathrm{2}} \\ $$$${x}=\mathrm{4}\pm{n}\in\mathbb{Z}. \\ $$$$ \\ $$$$ \\ $$

Commented by Yozzii last updated on 24/Jan/16

x^2 −8x−f(t)=0  x=((8±(√(64+4f(t))))/2)=4±(√(16+f(t))).  f(t) , ∀t∈Z,must satisfy (1) f(t)≥−16  and (2) f(t)+16=N^2   where N∈Z.  Thus, let t=N⇒f(t)=t^2 −16.  This further suggests that f(t)=(P(t))^2 −16  where P(t) is a polynomial in t with real  integer coefficients generally.  ∴ x=4±(√((P(t))^2 −16+16))=4±P(t).  So x=4±P(t)∈Z if t∈Z.

$${x}^{\mathrm{2}} −\mathrm{8}{x}−{f}\left({t}\right)=\mathrm{0} \\ $$$${x}=\frac{\mathrm{8}\pm\sqrt{\mathrm{64}+\mathrm{4}{f}\left({t}\right)}}{\mathrm{2}}=\mathrm{4}\pm\sqrt{\mathrm{16}+{f}\left({t}\right)}. \\ $$$${f}\left({t}\right)\:,\:\forall{t}\in\mathbb{Z},{must}\:{satisfy}\:\left(\mathrm{1}\right)\:{f}\left({t}\right)\geqslant−\mathrm{16} \\ $$$${and}\:\left(\mathrm{2}\right)\:{f}\left({t}\right)+\mathrm{16}={N}^{\mathrm{2}} \:\:{where}\:{N}\in\mathbb{Z}. \\ $$$${Thus},\:{let}\:{t}={N}\Rightarrow{f}\left({t}\right)={t}^{\mathrm{2}} −\mathrm{16}. \\ $$$${This}\:{further}\:{suggests}\:{that}\:{f}\left({t}\right)=\left({P}\left({t}\right)\right)^{\mathrm{2}} −\mathrm{16} \\ $$$${where}\:{P}\left({t}\right)\:{is}\:{a}\:{polynomial}\:{in}\:{t}\:{with}\:{real} \\ $$$${integer}\:{coefficients}\:{generally}. \\ $$$$\therefore\:{x}=\mathrm{4}\pm\sqrt{\left({P}\left({t}\right)\right)^{\mathrm{2}} −\mathrm{16}+\mathrm{16}}=\mathrm{4}\pm{P}\left({t}\right). \\ $$$${So}\:{x}=\mathrm{4}\pm{P}\left({t}\right)\in\mathbb{Z}\:{if}\:{t}\in\mathbb{Z}. \\ $$

Commented by Rasheed Soomro last updated on 24/Jan/16

G^(O^( v) O) D!

$$\mathrm{G}^{\mathcal{O}^{\:\mathrm{v}} \mathcal{O}} \mathrm{D}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com