Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 44230 by behi83417@gmail.com last updated on 24/Sep/18

Answered by MrW3 last updated on 25/Sep/18

(1)  f(x,y)=x^2 +xy+y^2 −ax−by  (∂f/∂x)=2x+y−a=0  ...(i)  (∂f/∂y)=x+2y−b=0  ...(ii)  3x−2a+b=0  x=((2a−b)/3)  3y−2b+a=0  y=((2b−a)/3)  f_(min) =(((2a−b)/3))^2 +(((2a−b)/3))(((2b−a)/3))+(((2b−a)/3))^2 −a(((2a−b)/3))−b(((2b−a)/3))  =(1/9)[4a^2 −4ab+b^2 +4ab−2b^2 −2a^2 +ab+4b^2 −4ab+a^2 −6a^2 +3ab−6b^2 +3ab]  =(1/3)(ab−a^2 −b^2 )    (2)  g(x,y)=(((ax+by+c)^2 )/(x^2 +y^2 +1))  (∂g/∂x)=−((2x(ax+by+c)^2 )/((x^2 +y^2 +1)^2 ))+((2a(ax+by+c))/(x^2 +y^2 +1))=0  x(ax+by+c)=a(x^2 +y^2 +1)  ...(i)  (∂g/∂y)=−((2y(ax+by+c)^2 )/((x^2 +y^2 +1)^2 ))+((2b(ax+by+c))/(x^2 +y^2 +1))=0  y(ax+by+c)=b(x^2 +y^2 +1)  ...(ii)  (x/a)=(y/b)  x(ax+((b^2 x)/a)+c)=a(x^2 +((b^2 x^2 )/a^2 )+1)   ax(a^2 x+b^2 x+ac)=a(a^2 x^2 +b^2 x^2 +a^2 )   ⇒x=(a/c)  ⇒y=(b/c)  ⇒g_(max) =((((a^2 /c)+(b^2 /c)+c)^2 )/((a^2 /c^2 )+(b^2 /c^2 )+1))=a^2 +b^2 +c^2

(1)f(x,y)=x2+xy+y2axbyfx=2x+ya=0...(i)fy=x+2yb=0...(ii)3x2a+b=0x=2ab33y2b+a=0y=2ba3fmin=(2ab3)2+(2ab3)(2ba3)+(2ba3)2a(2ab3)b(2ba3)=19[4a24ab+b2+4ab2b22a2+ab+4b24ab+a26a2+3ab6b2+3ab]=13(aba2b2)(2)g(x,y)=(ax+by+c)2x2+y2+1gx=2x(ax+by+c)2(x2+y2+1)2+2a(ax+by+c)x2+y2+1=0x(ax+by+c)=a(x2+y2+1)...(i)gy=2y(ax+by+c)2(x2+y2+1)2+2b(ax+by+c)x2+y2+1=0y(ax+by+c)=b(x2+y2+1)...(ii)xa=ybx(ax+b2xa+c)=a(x2+b2x2a2+1)ax(a2x+b2x+ac)=a(a2x2+b2x2+a2)x=acy=bcgmax=(a2c+b2c+c)2a2c2+b2c2+1=a2+b2+c2

Commented by behi83417@gmail.com last updated on 25/Sep/18

thank you dear master.  nice work done by you.perfect!

thankyoudearmaster.niceworkdonebyyou.perfect!

Commented by tanmay.chaudhury50@gmail.com last updated on 25/Sep/18

bah...darun...excellent...

bah...darun...excellent...

Commented by MrW3 last updated on 25/Sep/18

thank you both sirs!

thankyoubothsirs!

Commented by rahul 19 last updated on 26/Sep/18

Sir, how to check whether it will be  g_(max )  / g_(min)  and f_(min)  / f_(max ) ?

Sir,howtocheckwhetheritwillbegmax/gminandfmin/fmax?

Commented by MrW3 last updated on 26/Sep/18

we check if (∂^2 f/∂x^2 ) and (∂^2 f/∂y^2 ) are +ve or −ve.

wecheckif2fx2and2fy2are+veorve.

Commented by rahul 19 last updated on 26/Sep/18

Suppose there is a case where  (∂^2 f/∂x^2 ) = +ve and    (∂^2 f/∂y^2 ) = −ve.   Then What will i say ?

Supposethereisacasewhere2fx2=+veand2fy2=ve.ThenWhatwillisay?

Commented by MrW3 last updated on 26/Sep/18

max. in y−direction but  min. in x−direction  ⇒neither a max. nor a min. for  the function

max.inydirectionbutmin.inxdirectionneitheramax.noramin.forthefunction

Commented by rahul 19 last updated on 26/Sep/18

Ok sir, thanks!

Oksir,thanks!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com