Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 44308 by abdo.msup.com last updated on 26/Sep/18

let I = ∫_0 ^∞  cos^4 t e^(−2t) dt and J=∫_0 ^∞  sin^4 t e^(−2t) dt  1) calculate I +J and I−J  2)find the values of I and J.

letI=0cos4te2tdtandJ=0sin4te2tdt1)calculateI+JandIJ2)findthevaluesofIandJ.

Commented by tanmay.chaudhury50@gmail.com last updated on 27/Sep/18

Commented by maxmathsup by imad last updated on 28/Sep/18

1) we have I +J = ∫_0 ^∞   (cos^4 t +sin^4 t)e^(−2t) dt  =∫_0 ^∞  { (cos^2 t +sin^2 t)^2 −2cos^2 t sin^2 t}e^(−2t) dt  = ∫_0 ^∞  {1−(1/2)sin^2 (2t)}e^(−2t) dt = ∫_0 ^∞   e^(−2t) dt −(1/2) ∫_0 ^∞ ( ((1−cos(2t))/2))e^(−2t) dt  =[−(1/2)e^(−2t) ]_0 ^(+∞)  −(1/4) ∫_0 ^∞  e^(−2t) dt +(1/4) ∫_0 ^∞  e^(−2t)  cos(2t)dt  =(1/2) +(1/8)[ e^(−2t) ]_0 ^(+∞)  +(1/4)∫_0 ^∞   e^(−2t)  cos(2t)dt=(3/8) +(1/4) Re(∫_0 ^∞  e^(−2t+i2t) dt)  but  ∫_0 ^∞    e^((−2+2i)t) dt =[ (1/(−2+2i)) e^((−2+2i)t) ]_0 ^(+∞)  =((−1)/(−2+2i)) =(1/(2−2i))  = ((2+2i)/8) =((1+i)/4) ⇒ I +J =(3/8) +(1/(16)) =(7/(16))  also we have  I−J =∫_0 ^∞   (cos^4 t −sin^4 t)e^(−2t) dt =∫_0 ^∞  (cos^2 t −sin^2 t)e^(−2t) dt  =∫_0 ^∞  e^(−2t)  cos(2t)dt =Re( ∫_0 ^∞   e^((−2+2i)t) dt)=(1/4)  2) we have I +J =(7/(16)) and I−J =(1/4) ⇒ 2I =(7/(16)) +(1/4) =((11)/(16)) ⇒I =((11)/(32))  and J =(7/(16)) −((11)/(32)) =((14−11)/(32)) =(3/(32)) .

1)wehaveI+J=0(cos4t+sin4t)e2tdt=0{(cos2t+sin2t)22cos2tsin2t}e2tdt=0{112sin2(2t)}e2tdt=0e2tdt120(1cos(2t)2)e2tdt=[12e2t]0+140e2tdt+140e2tcos(2t)dt=12+18[e2t]0++140e2tcos(2t)dt=38+14Re(0e2t+i2tdt)but0e(2+2i)tdt=[12+2ie(2+2i)t]0+=12+2i=122i=2+2i8=1+i4I+J=38+116=716alsowehaveIJ=0(cos4tsin4t)e2tdt=0(cos2tsin2t)e2tdt=0e2tcos(2t)dt=Re(0e(2+2i)tdt)=142)wehaveI+J=716andIJ=142I=716+14=1116I=1132andJ=7161132=141132=332.

Answered by tanmay.chaudhury50@gmail.com last updated on 27/Sep/18

I+J=∫_0 ^∞ e^(−2t) (cos^4 t+sin^4 t)dt  =∫_0 ^∞ e^(−2t) {(cos^2 t+sin^2 t)^2 −2sin^2 tcos^2 t}dt  =∫_0 ^∞ e^(−2t) {1−((sin^2 2t)/2)}dt  =∫_0 ^∞ e^(−2t) {1−((1−cos4t)/4)}  =∫_0 ^∞ e^(−2t) (((4−1+cos4t)/4)}  =(3/4)∫_0 ^∞ e^(−2t) dt+(1/4)∫_0 ^∞ e^(−2t) cos4t dt  formula ∫e^(ax) cosbx dx=((e^(ax) (acosbx+bsinbx))/(a^2 +b^2 ))  =(3/4)∣(e^(−2t) /(−2))∣_0 ^∞ +(1/4)∣((e^(−2t) (−2cos4t+4sin4t))/((−2)^2 +(4)^2 ))∣_0 ^∞   I−J=∫_0 ^∞ e^(−2t) (cos^4 t−sin^4 t)dt  =∫_0 ^∞ e^(−2t) cos2t dt  =∣((e^(−2t) (−2cos2t+2sin2t)/((−2)^2 +(4^2 )))∣_0 ^∞   pls check upper limit of the interval...

I+J=0e2t(cos4t+sin4t)dt=0e2t{(cos2t+sin2t)22sin2tcos2t}dt=0e2t{1sin22t2}dt=0e2t{11cos4t4}=0e2t(41+cos4t4}=340e2tdt+140e2tcos4tdtformulaeaxcosbxdx=eax(acosbx+bsinbx)a2+b2=34e2t20+14e2t(2cos4t+4sin4t)(2)2+(4)20IJ=0e2t(cos4tsin4t)dt=0e2tcos2tdt=∣e2t(2cos2t+2sin2t(2)2+(42)0plscheckupperlimitoftheinterval...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com