Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 44319 by abdo.msup.com last updated on 26/Sep/18

find lim_(x→0^+ )    ∫_x ^(2x)  ((√(1+t^2 ))/t)dt .

findlimx0+x2x1+t2tdt.

Commented by maxmathsup by imad last updated on 27/Sep/18

changement t =sh(u) give  ∫_(argsh(x)) ^(argsh(2x))   ((√(1+sh^2 u))/(sh(u))) ch(u)dt  =∫_(argsh(x)) ^(argsh(2x))  ((ch^2 u)/(sh(u)))dt  =  ∫_(ln(x+(√(1+x^2 )))) ^(ln(2x+(√(1+4x^2 ))))  ((1+ch(2u))/(e^u  −e^(−u) ))du  =∫_(ln(x+(√(1+x^2 )))) ^(ln(2x+(√(1+4x^2 ))))    ((1+((e^(2u)  +e^(−2u) )/2))/(e^u  −e^(−u) ))du =(1/2)∫_(ln(x+(√(1+x^2 )))) ^(ln(2x +(√(1+4x^2 )))   ((2 +e^(2u)  +e^(−2u) )/(e^u  −e^(−u) )) du  =_(e^u =α)     (1/2) ∫_(x+(√(1+x^2 ))) ^(2x +(√(1+4x^2 )))   ((2 +α^2  +α^(−2) )/(α−α^(−1) ))dα =(1/2) ∫_(x+(√(1+x^2 ))) ^(2x +(√(1+4x^2 )))  ((2α^2  +α^4  +1)/(α^3  −α))dα  =(1/2) ∫_(x+(√(1+x^2 ))) ^(2x+(√(1+4x^2 )))   ((α^4  +2α^2  +1)/(α^3  −α)) dα=(1/2) ∫_(x+(√(1+x^2 ))) ^(2x+(√(1+4x^2 ))) ((α(α^3 −α)+3α^2  +1)/(α^3 −α))dα  =(1/2)[(α^2 /2)]_(x+(√(1+x^2 ))) ^(2x+(√(1+4x^2 )))  +(1/2) ∫_(x+(√(1+x^2 ))) ^(2x+(√(1+4x^2 )))   ((3α^2  +1)/(α^3 −α))dα  =(1/4){ (2x+(√(1+4x^2 )))^2  −(x+(√(1+x^2 )))^2 } +(1/2) ∫_(x+(√(1+x^2 ))) ^(2x+(√(1+4x^2 )))    ((3α^2  +1)/(α^3  −α)) dα  let decompose F(α) =((3α^2  +1)/(α^3  −α)) =((3α^2  +1)/(α(α−1)(α+1)))  F(α) = (a/α) +(b/(α−1)) +(c/(α+1)) ⇒a =−1     b =(4/2) =2 and     c=(4/2) =2 ⇒F(α) =−(1/α) +(2/(α−1)) +(2/(α+1)) ⇒  ∫_(x+(√(1+x^2 ))) ^(2x+(√(1+4x^2 )))  F(α)dα = [2ln∣α−1∣ +2 ln∣α+1∣−ln∣α∣]_(x+(√(1+x^2 ))) ^(2x+(√(1+4x^2 )))   =2ln∣2x−1+(√(1+4x^2 )) ∣+2ln∣2x+1+(√(1+4x^2 ∣))−ln∣2x+(√(1+4x^2 ))∣  −2ln∣x−1 +(√(1+x^2 ))∣ −2ln∣x+1 +(√(1+x^2 ))∣+ln∣x+(√(1+x^2 ))   =2ln∣ ((2x−1+(√(1+4x^2 )))/(x−1 +(√(1+x^2 ))))∣ +2ln∣((2x+1+(√(1+4x^2 )))/(x+1 +(√(1+x^2 ))))∣ −ln∣((2x+(√(1+4x^2 )))/(x+(√(1+x^2 )))) ∣  but lim_(x→0)      ((2x−1 +(√(1+4x^2 )))/(x−1+(√(1+x^2 )))) =lim_(x→0)  ((2 +((8x)/(2(√(1+4x^2 )))))/(1+ ((2x)/(2(√(1+x^2 )))))) =2 ⇒  (1/2) ∫_(x +(√(1+x^2 ))) ^(2x+(√(1+4x^2 )))     F(α) →ln(2) (x→0) ⇒  lim_(x→0^+ )      ∫_x ^(2x)    ((√(1+x^2 ))/x) dx =ln(2) .

changementt=sh(u)giveargsh(x)argsh(2x)1+sh2ush(u)ch(u)dt=argsh(x)argsh(2x)ch2ush(u)dt=ln(x+1+x2)ln(2x+1+4x2)1+ch(2u)eueudu=ln(x+1+x2)ln(2x+1+4x2)1+e2u+e2u2eueudu=12ln(x+1+x2)ln(2x+1+4x22+e2u+e2ueueudu=eu=α12x+1+x22x+1+4x22+α2+α2αα1dα=12x+1+x22x+1+4x22α2+α4+1α3αdα=12x+1+x22x+1+4x2α4+2α2+1α3αdα=12x+1+x22x+1+4x2α(α3α)+3α2+1α3αdα=12[α22]x+1+x22x+1+4x2+12x+1+x22x+1+4x23α2+1α3αdα=14{(2x+1+4x2)2(x+1+x2)2}+12x+1+x22x+1+4x23α2+1α3αdαletdecomposeF(α)=3α2+1α3α=3α2+1α(α1)(α+1)F(α)=aα+bα1+cα+1a=1b=42=2andc=42=2F(α)=1α+2α1+2α+1x+1+x22x+1+4x2F(α)dα=[2lnα1+2lnα+1lnα]x+1+x22x+1+4x2=2ln2x1+1+4x2+2ln2x+1+1+4x2ln2x+1+4x22lnx1+1+x22lnx+1+1+x2+lnx+1+x2=2ln2x1+1+4x2x1+1+x2+2ln2x+1+1+4x2x+1+1+x2ln2x+1+4x2x+1+x2butlimx02x1+1+4x2x1+1+x2=limx02+8x21+4x21+2x21+x2=212x+1+x22x+1+4x2F(α)ln(2)(x0)limx0+x2x1+x2xdx=ln(2).

Commented by maxmathsup by imad last updated on 27/Sep/18

another but easy    ∃ c ∈]x,2x[  /  ∫_x ^(2x)  ((√(1+t^2 ))/t)dt =(√(1+c^2 )) ∫_x ^(2x)  (dt/t)  =(√(1+c^2 ))ln∣((2x)/x)∣   but x→0 ⇒ c→0 lim_(x→0)  ∫_x ^(2x)   ((√(1+t^2 ))/t)dt =ln(2).

anotherbuteasyc]x,2x[/x2x1+t2tdt=1+c2x2xdtt=1+c2ln2xxbutx0c0limx0x2x1+t2tdt=ln(2).

Answered by tanmay.chaudhury50@gmail.com last updated on 26/Sep/18

y^2 =1+t^2   2ydy=2tdt  ∫((t(√(1+t^2 )))/t^2 )dt  ∫((y×ydy)/(y^2 −1))  ∫((y^2 −1+1)/(y^2 −1))dy  ∫dy+∫(dy/((y^ +1)(y−1)))  ∫dy+(1/2)∫(((y+1)−(y−1))/((y+1)(y−1)))dy  y+(1/2)ln(((y−1)/(y+1)))  (√(t^2 +1)) +(1/2)ln((((√(t^2 +1)) −1)/((√(t^2 +1)) +1)))  ∫_x ^(2x) ((√(1+t^2 ))/t)dt  {(√(4x^2 +1)) −(√(x^2 +1)) }+(1/2){ln((((√(4x^2 +1)) −1)/((√(4x^2 +1)) +1)))−ln((((√(x^2 +1)) −1)/((√(x^2 +1)) +1)))}    when lim x→0+   first expression=0  but second expression (1/2){ln((0/2))−ln((0/2))}  pls check...    i

y2=1+t22ydy=2tdtt1+t2t2dty×ydyy21y21+1y21dydy+dy(y+1)(y1)dy+12(y+1)(y1)(y+1)(y1)dyy+12ln(y1y+1)t2+1+12ln(t2+11t2+1+1)x2x1+t2tdt{4x2+1x2+1}+12{ln(4x2+114x2+1+1)ln(x2+11x2+1+1)}whenlimx0+firstexpression=0butsecondexpression12{ln(02)ln(02)}plscheck...i

Terms of Service

Privacy Policy

Contact: info@tinkutara.com