Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 44384 by Joel578 last updated on 28/Sep/18

Let a and b are real numbers such that  a > b > 0  Find the minimum value of  (√2)a^3  + (3/(ab − b^2 ))

Letaandbarerealnumberssuchthat a>b>0 Findtheminimumvalueof 2a3+3abb2

Commented bybehi83417@gmail.com last updated on 28/Sep/18

f(a,b)=(√2)a^3 +(3/(ab−b^2 ))  (∂f/∂a)=3(√2)a^2 −((3b)/((ab−b^2 )^2 ))=0   (i)  (∂f/∂b)=−((3(a−2b))/((ab−b^2 )^2 ))=0   (ii)  (ii)⇒a−2b=0⇒a=2b  (i)⇒12(√2)b^2 −((3b)/((2b^2 −b^2 )^2 ))=0⇒  12(√2)b^2 −(3/b^3 )=0⇒b^5 =(1/(4(√2)))=(1/2^(5/2) )=(1/(((√2))^5 ))  ⇒b=((√2)/2),a=(√2)  ⇒f_(min) =(√2)((√2))^3 +(3/((√2).((√2)/2)−(1/2)))=  =4+(3/(1−(1/2)))=10   .

f(a,b)=2a3+3abb2 fa=32a23b(abb2)2=0(i) fb=3(a2b)(abb2)2=0(ii) (ii)a2b=0a=2b (i)122b23b(2b2b2)2=0 122b23b3=0b5=142=1252=1(2)5 b=22,a=2 fmin=2(2)3+32.2212= =4+3112=10.

Commented byajfour last updated on 28/Sep/18

Very grateful Sir!

VerygratefulSir!

Commented byrahul 19 last updated on 28/Sep/18

Thanks to Mrw_3  sir for sharing this  method with us!!

ThankstoMrw3sirforsharingthis methodwithus!!

Commented byJoel578 last updated on 28/Sep/18

Thank you very much

Thankyouverymuch

Commented bytanmay.chaudhury50@gmail.com last updated on 28/Sep/18

Commented bytanmay.chaudhury50@gmail.com last updated on 28/Sep/18

Answered by ajfour last updated on 28/Sep/18

let  x= (√2)a^3 +(3/(b(a−b)))  ⇒  b(a−b)=(3/((x−(√2)a^3 )))  if x is minimum, b(a−b) is maximum  ⇒ b = (a/2)  ⇒  x−(√2)a^3  = ((12)/a^2 )  x = (√2)a^3 +((12)/a^2 )  which has a minimum value  when    3(√2)a^2  = ((24)/a^3 )  ⇒     a^5  = ((√2))^5    ⇒  a= (√2)   ⇒   x_(min)  = 4+((12)/2) = 10 .

letx=2a3+3b(ab) b(ab)=3(x2a3) ifxisminimum,b(ab)ismaximum b=a2 x2a3=12a2 x=2a3+12a2 whichhasaminimumvalue when32a2=24a3 a5=(2)5a=2 xmin=4+122=10.

Commented byJoel578 last updated on 28/Sep/18

Thank you very much

Thankyouverymuch

Answered by tanmay.chaudhury50@gmail.com last updated on 28/Sep/18

f(a,b)=(√2) a^3 +3(ab−b^2 )^(−1)   (∂f/∂a)=3(√2) a^2 −3(ab−b^2 )^(−2) (b)  (∂f/∂a)=0=3(√2) a^2 −((3b)/((ab−b^2 )^2 ))    we get a=(√2)     (∂^2 f/∂a^2 )=6(√2) a+6(ab−b^2 )^(−3) (b)^2   (∂f/∂b)=0−3(ab−b^2 )^(−2) (a−2b)  (∂f/∂b)=0=((−3)/((ab−b^2 )^2 ))(a−2b) we get  b=(1/((√2) ))  a=2b    3(√2)a^2 −((3b)/((ab−b^2 )^2 ))=0  12(√2) b^2 −((3b)/b^4 )=0  12(√2) b^6 −3b=0  3b(4(√2) b^5 −1)=0  b=((1/(4(√2))))^(1/5) ={((1/(√2)) )^5 }^(1/5) =(1/(√2))  a=2×(1/(√2))=(√2)   (∂^2 b/∂b^2 )=6(ab−b^2 )^(−3) (a−2b)^2 −3(ab−b^2 )(0−2)  now putting the value in (∂^2 f/∂a^2 ) and (∂^2 f/∂b^2 )  (∂^2 f/∂a^2 )=6(√2) a+((6b^2 )/((ab−b^2 )^3 ))  =6(√2) ×(√2) +((6×(1/2))/((1−(1/2))^3 ))=12+(3/(1/8))=36  (∂^2 f/∂b^2 )=6(1−(1/2))^(−3) ((√2) −(2/((√2) )))^2 +6(1−(1/2))=3  (∂/∂a)((∂f/∂b))=(∂/∂a){((6b−3a)/((ab−b^2 )^2 ))}    =(((ab−b^2 )^2 (−3)−(6b−3a)×2(ab−b^2 )(b))/((ab−b^2 )^4 ))  =(((1−(1/2))^2 (−3)−((6/(√2))−3(√2) )×(1−(1/2))((1/2)))/((1−(1/2))^4 ))  =(((−3)/4)/(1/(16)))=−12  (∂^2 f/∂a^2 )×(∂^2 f/∂b^2 )−{(∂/∂a)((∂f/∂b))}^2   =36×3−(−12)^2   =108−144=−36<0  saddle point...

f(a,b)=2a3+3(abb2)1 fa=32a23(abb2)2(b) fa=0=32a23b(abb2)2wegeta=2 2fa2=62a+6(abb2)3(b)2 fb=03(abb2)2(a2b) fb=0=3(abb2)2(a2b)wegetb=12 a=2b 32a23b(abb2)2=0 122b23bb4=0 122b63b=0 3b(42b51)=0 b=(142)15={(12)5}15=12 a=2×12=2 2bb2=6(abb2)3(a2b)23(abb2)(02) nowputtingthevaluein2fa2and2fb2 2fa2=62a+6b2(abb2)3 =62×2+6×12(112)3=12+318=36 2fb2=6(112)3(222)2+6(112)=3 a(fb)=a{6b3a(abb2)2} =(abb2)2(3)(6b3a)×2(abb2)(b)(abb2)4 =(112)2(3)(6232)×(112)(12)(112)4 =34116=12 2fa2×2fb2{a(fb)}2 =36×3(12)2 =108144=36<0saddlepoint...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com