Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 4441 by Rasheed Soomro last updated on 27/Jan/16

Determine          lim_(x→0) (sin x)^(1/x)  .

$$\mathrm{Determine}\: \\ $$$$\:\:\:\:\:\:\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{sin}\:\mathrm{x}\right)^{\mathrm{1}/\mathrm{x}} \:. \\ $$

Commented by Yozzii last updated on 29/Jan/16

The limit does not exist.  l=lim_(x→0^− ) (sinx)^(1/x)   lnl=lim_(x→0^− ) (1/x)lnsinx.  For x→0^− , lnsinx∈C since sinx<0 and (1/x)→−∞.  ∴lnl∈C⇒l∈C. But, lim_(x→0^+ ) (sinx)^(1/x) =0.

$${The}\:{limit}\:{does}\:{not}\:{exist}. \\ $$$${l}=\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\left({sinx}\right)^{\mathrm{1}/{x}} \\ $$$${lnl}=\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\frac{\mathrm{1}}{{x}}{lnsinx}. \\ $$$${For}\:{x}\rightarrow\mathrm{0}^{−} ,\:{lnsinx}\in\mathbb{C}\:{since}\:{sinx}<\mathrm{0}\:{and}\:\frac{\mathrm{1}}{{x}}\rightarrow−\infty. \\ $$$$\therefore{lnl}\in\mathbb{C}\Rightarrow{l}\in\mathbb{C}.\:{But},\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\left({sinx}\right)^{\mathrm{1}/{x}} =\mathrm{0}. \\ $$

Commented by Jens last updated on 29/Jan/16

Put y =1/x. Then sinx=sin(1/y)  ⇒1/y as y⇒∞ so (sinx)^(1/x) ⇒  (1/y)^y =1/y^y ⇒0 for y ⇒∞ so the  limit does exist!

$${Put}\:{y}\:=\mathrm{1}/{x}.\:{Then}\:{sinx}={sin}\left(\mathrm{1}/{y}\right) \\ $$$$\Rightarrow\mathrm{1}/{y}\:{as}\:{y}\Rightarrow\infty\:{so}\:\left({sinx}\right)^{\mathrm{1}/{x}} \Rightarrow \\ $$$$\left(\mathrm{1}/{y}\right)^{{y}} =\mathrm{1}/{y}^{{y}} \Rightarrow\mathrm{0}\:{for}\:{y}\:\Rightarrow\infty\:{so}\:{the} \\ $$$${limit}\:{does}\:{exist}! \\ $$

Commented by Yozzii last updated on 30/Jan/16

For a limit of f(x) to exist near x=a we need that   lim_(x→a^+ ) f(x)=lim_(x→a^− ) f(x).  By letting x=1/y⇒y=1/x  ∴ as x→0^− ⇒y→−∞  as x→0^+ ⇒y→∞  If the limit exists then we require  lim_(y→−∞) (sin((1/y)))^y =lim_(y→+∞) (sin((1/y)))^y   But, while lim_(y→∞) (sin(1/y))^y =(sin(+0))^∞ =+0   lim_(y→−∞) (sin(1/y))^y =(sin(−0))^(−∞) =(1/((sin(−0))^∞ ))=(1/(−0))   which is undefined.

$${For}\:{a}\:{limit}\:{of}\:{f}\left({x}\right)\:{to}\:{exist}\:{near}\:{x}={a}\:{we}\:{need}\:{that}\: \\ $$$$\underset{{x}\rightarrow{a}^{+} } {\mathrm{lim}}{f}\left({x}\right)=\underset{{x}\rightarrow{a}^{−} } {\mathrm{lim}}{f}\left({x}\right). \\ $$$${By}\:{letting}\:{x}=\mathrm{1}/{y}\Rightarrow{y}=\mathrm{1}/{x} \\ $$$$\therefore\:{as}\:{x}\rightarrow\mathrm{0}^{−} \Rightarrow{y}\rightarrow−\infty \\ $$$${as}\:{x}\rightarrow\mathrm{0}^{+} \Rightarrow{y}\rightarrow\infty \\ $$$${If}\:{the}\:{limit}\:{exists}\:{then}\:{we}\:{require} \\ $$$$\underset{{y}\rightarrow−\infty} {\mathrm{lim}}\left({sin}\left(\frac{\mathrm{1}}{{y}}\right)\right)^{{y}} =\underset{{y}\rightarrow+\infty} {\mathrm{lim}}\left({sin}\left(\frac{\mathrm{1}}{{y}}\right)\right)^{{y}} \\ $$$${But},\:{while}\:\underset{{y}\rightarrow\infty} {\mathrm{lim}}\left({sin}\left(\mathrm{1}/{y}\right)\right)^{{y}} =\left({sin}\left(+\mathrm{0}\right)\right)^{\infty} =+\mathrm{0}\: \\ $$$$\underset{{y}\rightarrow−\infty} {\mathrm{lim}}\left({sin}\left(\mathrm{1}/{y}\right)\right)^{{y}} =\left({sin}\left(−\mathrm{0}\right)\right)^{−\infty} =\frac{\mathrm{1}}{\left({sin}\left(−\mathrm{0}\right)\right)^{\infty} }=\frac{\mathrm{1}}{−\mathrm{0}}\: \\ $$$${which}\:{is}\:{undefined}. \\ $$

Commented by Yozzii last updated on 30/Jan/16

Commented by Yozzii last updated on 30/Jan/16

For negative x near zero,   no real value of (sinx)^(1/x)  exists.

$${For}\:{negative}\:{x}\:{near}\:{zero},\: \\ $$$${no}\:{real}\:{value}\:{of}\:\left({sinx}\right)^{\mathrm{1}/{x}} \:{exists}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com