Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 44436 by ajfour last updated on 29/Sep/18

Commented by ajfour last updated on 29/Sep/18

Find R in terms of r.

$${Find}\:{R}\:{in}\:{terms}\:{of}\:{r}. \\ $$

Answered by MrW3 last updated on 29/Sep/18

Commented by MrW3 last updated on 29/Sep/18

assume eqn. of parabola is y=(x^2 /a)  y_C =x_C ^2 /a=r+r sin α=r(1+sin α)  tan α=(x_C /(2y_C ))=((ax_C ^2 )/(2ay_C ×x_C ))=(a/(2x_C ))=((√a)/(2(√(r(1+sin α)))))  4 tan^2  α=(a/(r(1+sin α)))  4r sin^2  α (1+sin α)=a(1−sin^2  α)  4 sin^3  α +(4+(a/r))sin^2  α−(a/r)=0  or with μ=(a/r)  4 sin^3  α +(4+μ)sin^2  α−μ=0    ...(i)    ⇒α=... in term of r  x_B =x_C +r cos α=(√(ar(1+sin α)))+r cos α    similarly:  x_E =(√(aR(1+sin β)))+R cos β  4 sin^3  β +(4+(a/R))sin^2  β−(a/R)=0  or with λ=(a/R)  4 sin^3  β +(4+λ)sin^2  β−λ=0   ...(ii)    (R−r)^2 +(x_E −x_B )^2 =(R+r)^2   x_E −x_B =2(√(Rr))  (√(aR(1+sin β)))+R cos β−(√(ar(1+sin α)))−r cos α=2(√(Rr))  (√(aR(1+sin β)))+R cos β−2(√(Rr))=(√(ar(1+sin α)))+r cos α  (√((1+sin β)/λ))+((cos β)/λ)−(2/(√(μλ)))=(√((1+sin α)/μ))+((cos α)/μ)   ...(iii)    three eqn. with three unknowns: α,β,λ  .....  for r=2, I found R≈8.842

$${assume}\:{eqn}.\:{of}\:{parabola}\:{is}\:{y}=\frac{{x}^{\mathrm{2}} }{{a}} \\ $$$${y}_{{C}} ={x}_{{C}} ^{\mathrm{2}} /{a}={r}+{r}\:\mathrm{sin}\:\alpha={r}\left(\mathrm{1}+\mathrm{sin}\:\alpha\right) \\ $$$$\mathrm{tan}\:\alpha=\frac{{x}_{{C}} }{\mathrm{2}{y}_{{C}} }=\frac{{ax}_{{C}} ^{\mathrm{2}} }{\mathrm{2}{ay}_{{C}} ×{x}_{{C}} }=\frac{{a}}{\mathrm{2}{x}_{{C}} }=\frac{\sqrt{{a}}}{\mathrm{2}\sqrt{{r}\left(\mathrm{1}+\mathrm{sin}\:\alpha\right)}} \\ $$$$\mathrm{4}\:\mathrm{tan}^{\mathrm{2}} \:\alpha=\frac{{a}}{{r}\left(\mathrm{1}+\mathrm{sin}\:\alpha\right)} \\ $$$$\mathrm{4}{r}\:\mathrm{sin}^{\mathrm{2}} \:\alpha\:\left(\mathrm{1}+\mathrm{sin}\:\alpha\right)={a}\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\alpha\right) \\ $$$$\mathrm{4}\:\mathrm{sin}^{\mathrm{3}} \:\alpha\:+\left(\mathrm{4}+\frac{{a}}{{r}}\right)\mathrm{sin}^{\mathrm{2}} \:\alpha−\frac{{a}}{{r}}=\mathrm{0} \\ $$$${or}\:{with}\:\mu=\frac{{a}}{{r}} \\ $$$$\mathrm{4}\:\mathrm{sin}^{\mathrm{3}} \:\alpha\:+\left(\mathrm{4}+\mu\right)\mathrm{sin}^{\mathrm{2}} \:\alpha−\mu=\mathrm{0}\:\:\:\:...\left({i}\right) \\ $$$$ \\ $$$$\Rightarrow\alpha=...\:{in}\:{term}\:{of}\:{r} \\ $$$${x}_{{B}} ={x}_{{C}} +{r}\:\mathrm{cos}\:\alpha=\sqrt{{ar}\left(\mathrm{1}+\mathrm{sin}\:\alpha\right)}+{r}\:\mathrm{cos}\:\alpha \\ $$$$ \\ $$$${similarly}: \\ $$$${x}_{{E}} =\sqrt{{aR}\left(\mathrm{1}+\mathrm{sin}\:\beta\right)}+{R}\:\mathrm{cos}\:\beta \\ $$$$\mathrm{4}\:\mathrm{sin}^{\mathrm{3}} \:\beta\:+\left(\mathrm{4}+\frac{{a}}{{R}}\right)\mathrm{sin}^{\mathrm{2}} \:\beta−\frac{{a}}{{R}}=\mathrm{0} \\ $$$${or}\:{with}\:\lambda=\frac{{a}}{{R}} \\ $$$$\mathrm{4}\:\mathrm{sin}^{\mathrm{3}} \:\beta\:+\left(\mathrm{4}+\lambda\right)\mathrm{sin}^{\mathrm{2}} \:\beta−\lambda=\mathrm{0}\:\:\:...\left({ii}\right) \\ $$$$ \\ $$$$\left({R}−{r}\right)^{\mathrm{2}} +\left({x}_{{E}} −{x}_{{B}} \right)^{\mathrm{2}} =\left({R}+{r}\right)^{\mathrm{2}} \\ $$$${x}_{{E}} −{x}_{{B}} =\mathrm{2}\sqrt{{Rr}} \\ $$$$\sqrt{{aR}\left(\mathrm{1}+\mathrm{sin}\:\beta\right)}+{R}\:\mathrm{cos}\:\beta−\sqrt{{ar}\left(\mathrm{1}+\mathrm{sin}\:\alpha\right)}−{r}\:\mathrm{cos}\:\alpha=\mathrm{2}\sqrt{{Rr}} \\ $$$$\sqrt{{aR}\left(\mathrm{1}+\mathrm{sin}\:\beta\right)}+{R}\:\mathrm{cos}\:\beta−\mathrm{2}\sqrt{{Rr}}=\sqrt{{ar}\left(\mathrm{1}+\mathrm{sin}\:\alpha\right)}+{r}\:\mathrm{cos}\:\alpha \\ $$$$\sqrt{\frac{\mathrm{1}+\mathrm{sin}\:\beta}{\lambda}}+\frac{\mathrm{cos}\:\beta}{\lambda}−\frac{\mathrm{2}}{\sqrt{\mu\lambda}}=\sqrt{\frac{\mathrm{1}+\mathrm{sin}\:\alpha}{\mu}}+\frac{\mathrm{cos}\:\alpha}{\mu}\:\:\:...\left({iii}\right) \\ $$$$ \\ $$$${three}\:{eqn}.\:{with}\:{three}\:{unknowns}:\:\alpha,\beta,\lambda \\ $$$$..... \\ $$$${for}\:{r}=\mathrm{2},\:{I}\:{found}\:{R}\approx\mathrm{8}.\mathrm{842} \\ $$

Commented by ajfour last updated on 29/Sep/18

great way sir, very nice, thanks.

$${great}\:{way}\:{sir},\:{very}\:{nice},\:{thanks}. \\ $$

Commented by ajfour last updated on 29/Sep/18

x_D −x_A =2(√(Rr))  for C, or F  x_F  and  x_D  are two values of b.  let   (dy/dx) = 2x = tan 𝛉     b−x = 𝛒sin 𝛉     y−𝛒 = 𝛒cos 𝛉     y = x^2   ________________________   4ρ(1+cos θ)= tan^2 θ  8ρ cos^2 (θ/2) = ((4tan^2 (θ/2))/((1−tan^2 (θ/2))^2 ))  let    tan (θ/2) = t , then    ((2ρ)/(1+t^2 )) = (t^2 /((1−t^2 )^2 ))  let  t^2 = z  ⇒    2ρ(1−z)^2  = z(1+z)      2ρz^2 −4ρz+2ρ = z+z^2      (2ρ−1)z^2 −(4ρ+1)z+2ρ = 0  ⇒ z= t^2  = ((4ρ−1±(√((4ρ+1)^2 −8ρ(2ρ−1))))/(2(2ρ−1)))  ⇒  t^2 =((4ρ−1−(√(1+16ρ)))/(4ρ−2))   Now   b = ((tan θ)/2)+ρ sin θ             = (t/(1−t^2 ))+((2ρt)/(1+t^2 ))    for  b_1  , ρ = r     for b_2  , ρ = R  (in their expressions in terms of t )      b_2 −b_1 = 2(√(Rr))  ....

$${x}_{{D}} −{x}_{{A}} =\mathrm{2}\sqrt{{Rr}} \\ $$$${for}\:{C},\:{or}\:{F} \\ $$$${x}_{{F}} \:{and}\:\:{x}_{{D}} \:{are}\:{two}\:{values}\:{of}\:\boldsymbol{{b}}. \\ $$$${let}\:\:\:\frac{{dy}}{{dx}}\:=\:\mathrm{2}\boldsymbol{{x}}\:=\:\mathrm{tan}\:\boldsymbol{\theta} \\ $$$$\:\:\:\boldsymbol{{b}}−\boldsymbol{{x}}\:=\:\boldsymbol{\rho}\mathrm{sin}\:\boldsymbol{\theta} \\ $$$$\:\:\:\boldsymbol{{y}}−\boldsymbol{\rho}\:=\:\boldsymbol{\rho}\mathrm{cos}\:\boldsymbol{\theta} \\ $$$$\:\:\:\boldsymbol{{y}}\:=\:\boldsymbol{{x}}^{\mathrm{2}} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\:\mathrm{4}\rho\left(\mathrm{1}+\mathrm{cos}\:\theta\right)=\:\mathrm{tan}\:^{\mathrm{2}} \theta \\ $$$$\mathrm{8}\rho\:\mathrm{cos}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\:=\:\frac{\mathrm{4tan}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}}{\left(\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$${let}\:\:\:\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\:=\:{t}\:,\:{then} \\ $$$$\:\:\frac{\mathrm{2}\rho}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\:\frac{{t}^{\mathrm{2}} }{\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${let}\:\:{t}^{\mathrm{2}} =\:{z} \\ $$$$\Rightarrow\:\:\:\:\mathrm{2}\rho\left(\mathrm{1}−{z}\right)^{\mathrm{2}} \:=\:{z}\left(\mathrm{1}+{z}\right) \\ $$$$\:\:\:\:\mathrm{2}\rho{z}^{\mathrm{2}} −\mathrm{4}\rho{z}+\mathrm{2}\rho\:=\:{z}+{z}^{\mathrm{2}} \\ $$$$\:\:\:\left(\mathrm{2}\rho−\mathrm{1}\right){z}^{\mathrm{2}} −\left(\mathrm{4}\rho+\mathrm{1}\right){z}+\mathrm{2}\rho\:=\:\mathrm{0} \\ $$$$\Rightarrow\:{z}=\:{t}^{\mathrm{2}} \:=\:\frac{\mathrm{4}\rho−\mathrm{1}\pm\sqrt{\left(\mathrm{4}\rho+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{8}\rho\left(\mathrm{2}\rho−\mathrm{1}\right)}}{\mathrm{2}\left(\mathrm{2}\rho−\mathrm{1}\right)} \\ $$$$\Rightarrow\:\:{t}^{\mathrm{2}} =\frac{\mathrm{4}\rho−\mathrm{1}−\sqrt{\mathrm{1}+\mathrm{16}\rho}}{\mathrm{4}\rho−\mathrm{2}} \\ $$$$\:{Now}\:\:\:{b}\:=\:\frac{\mathrm{tan}\:\theta}{\mathrm{2}}+\rho\:\mathrm{sin}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\frac{{t}}{\mathrm{1}−{t}^{\mathrm{2}} }+\frac{\mathrm{2}\rho{t}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\:\:{for}\:\:{b}_{\mathrm{1}} \:,\:\rho\:=\:{r} \\ $$$$\:\:\:{for}\:{b}_{\mathrm{2}} \:,\:\rho\:=\:{R} \\ $$$$\left({in}\:{their}\:{expressions}\:{in}\:{terms}\:{of}\:{t}\:\right) \\ $$$$\:\:\:\:{b}_{\mathrm{2}} −{b}_{\mathrm{1}} =\:\mathrm{2}\sqrt{{Rr}} \\ $$$$.... \\ $$

Commented by MrW3 last updated on 29/Sep/18

Finding a direct expression for θ in  term of R (and r), that′s great sir!

$${Finding}\:{a}\:{direct}\:{expression}\:{for}\:\theta\:{in} \\ $$$${term}\:{of}\:{R}\:\left({and}\:{r}\right),\:{that}'{s}\:{great}\:{sir}! \\ $$

Commented by ajfour last updated on 29/Sep/18

i have changed it entirely sir,  its all just the same (parametric).  probably, implicit as well.

$${i}\:{have}\:{changed}\:{it}\:{entirely}\:{sir}, \\ $$$${its}\:{all}\:{just}\:{the}\:{same}\:\left({parametric}\right). \\ $$$${probably},\:{implicit}\:{as}\:{well}. \\ $$

Commented by behi83417@gmail.com last updated on 29/Sep/18

nice work done!thanks master  sir mrW3.

$${nice}\:{work}\:{done}!{thanks}\:{master} \\ $$$${sir}\:{mrW}\mathrm{3}. \\ $$

Commented by behi83417@gmail.com last updated on 29/Sep/18

sir Ajfour! great question & also  nice prof.thanks for your nice  viewpoint.

$${sir}\:{Ajfour}!\:{great}\:{question}\:\&\:{also} \\ $$$${nice}\:{prof}.{thanks}\:{for}\:{your}\:{nice} \\ $$$${viewpoint}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com