Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 44466 by maxmathsup by imad last updated on 29/Sep/18

let f(x) = ∫_0 ^∞     ((x sinx)/(a^2  +x^4 ))dx  with a>0  1) find a explicit form of f(a)  2) find  g(a) = ∫_0 ^∞    ((xsinx)/((a^2  +x^4 )^2 ))dx  3)find the value of  ∫_0 ^∞   ((x sinx)/(x^4  +1))dx  4) find the value of ∫_0 ^∞    ((xsinx)/((x^4  +1)^2 ))dx .

letf(x)=0xsinxa2+x4dxwitha>0 1)findaexplicitformoff(a) 2)findg(a)=0xsinx(a2+x4)2dx 3)findthevalueof0xsinxx4+1dx 4)findthevalueof0xsinx(x4+1)2dx.

Commented byabdo.msup.com last updated on 29/Sep/18

f(a)= ∫_0 ^∞  ((xsinx)/(a^2  +x^4 ))dx  with a>0.

f(a)=0xsinxa2+x4dxwitha>0.

Commented bymaxmathsup by imad last updated on 03/Oct/18

1) we have f(a) =∫_0 ^∞  ((xsin(x))/(a^2  +x^4 ))dx  ⇒2f(a) =∫_(−∞) ^(+∞)   ((xsin(x))/(a^2  +x^4 ))dx  =Im( ∫_(−∞) ^(+∞)    ((x e^(ix) )/(a^2  +x^4 ))dx)  changement x =(√a)t give  I=∫_(−∞) ^(+∞)     ((x e^(ix) )/(a^2  +x^4 ))dx = ∫_(−∞) ^(+∞)   (((√a)t e^(i(√a)t) )/(a^2  +a^2 t^4 )) (√a)dt =(1/a) ∫_(−∞) ^(+∞)   ((t e^(i(√a)t) )/(t^4  +1))dt ⇒  a I = ∫_(−∞) ^(+∞)    ((t e^(i(√a)t) )/(t^4  +1))dt let  consider the complex function  ϕ(z) =((z e^(i(√a)z) )/(z^4  +1)) ⇒ϕ(z) =((z e^(i(√a)z) )/((z^2 −i)(z^2  +i))) =((z e^(i(√a)z) )/((z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^((iπ)/4) )))  so the poles of ϕ are +^− e^((iπ)/4)  and +^−  e^(−((iπ)/4))   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,e^((iπ)/4) ) +Res(ϕ,−e^(−((iπ)/4)) )} but  Res(ϕ, e^((iπ)/4) ) =lim_(z→e^((iπ)/4) )   (z−e^((iπ)/4) )ϕ(z) =((e^((iπ)/4)   e^(i(√a)e^((iπ)/4) ) )/(2 e^((iπ)/4) (2i))) =(1/(4i)) e^(i(√a)((1/(√2))+(i/(√2))))   =(1/(4i))  e^(−((√a)/((√2) )))  e^(i((√a)/(√2)))   Res(ϕ, −e^(−((iπ)/4)) ) =lim_(z→−e^(−((iπ)/4)) )  (z+e^(−((iπ)/4)) )ϕ(z)  = ((e^(−((iπ)/4))  e^(i(√a) e^(−((iπ)/4)) ) )/((−2i)(−2e^(−((iπ)/4)) ))) =(1/(4i)) e^(i(√a){(1/(√2))−(i/(√2))})  =(1/(4i)) e^((√a)/(√2))  e^(i((√a)/(√(2   ))))   ⇒ ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ (1/(4i)) e^(−((√a)/(√2)))  e^(i((√a)/(√2)))    +(1/(4i)) e^((√a)/(√2))   e^(i((√a)/(√2))) }  =(π/2) e^(i((√a)/(√2)))  { e^((√a)/(√2))  +e^(−((√a)/(√2))) } =πch(((√a)/(√2))) {cos(((√a)/(√2)))+i sin(((√a)/(√2)))} ⇒  I =(π/a)ch(((√a)/(√2))){cos(((√a)/(√2)))+isin(((√a)/(√2)))} ⇒2f(a) =(π/a)ch(((√a)/(√2)))sin(((√a)/(√2))) ⇒  f(a) =(π/(2a)) ch(((√a)/(√2)))sin(((√a)/(√2)))  with a>0 .

1)wehavef(a)=0xsin(x)a2+x4dx2f(a)=+xsin(x)a2+x4dx =Im(+xeixa2+x4dx)changementx=atgive I=+xeixa2+x4dx=+ateiata2+a2t4adt=1a+teiatt4+1dt aI=+teiatt4+1dtletconsiderthecomplexfunction φ(z)=zeiazz4+1φ(z)=zeiaz(z2i)(z2+i)=zeiaz(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4) sothepolesofφare+eiπ4and+eiπ4 +φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)}but Res(φ,eiπ4)=limzeiπ4(zeiπ4)φ(z)=eiπ4eiaeiπ42eiπ4(2i)=14ieia(12+i2) =14iea2eia2 Res(φ,eiπ4)=limzeiπ4(z+eiπ4)φ(z) =eiπ4eiaeiπ4(2i)(2eiπ4)=14ieia{12i2}=14iea2eia2 +φ(z)dz=2iπ{14iea2eia2+14iea2eia2} =π2eia2{ea2+ea2}=πch(a2){cos(a2)+isin(a2)} I=πach(a2){cos(a2)+isin(a2)}2f(a)=πach(a2)sin(a2) f(a)=π2ach(a2)sin(a2)witha>0.

Commented bymaxmathsup by imad last updated on 04/Oct/18

2) we have f(a) =∫_0 ^∞   ((x sin(x))/(a^2  +x^4 )) dx ⇒f^′ (a)=−∫_0 ^∞    ((2ax sinx)/((a^2  +x^4 )^2 ))dx ⇒  ∫_0 ^∞   ((x sinx)/((a^2  +x^4 )^2 )) =−(1/(2a)) f^′ (a)   and f(a) is known.

2)wehavef(a)=0xsin(x)a2+x4dxf(a)=02axsinx(a2+x4)2dx 0xsinx(a2+x4)2=12af(a)andf(a)isknown.

Commented bymaxmathsup by imad last updated on 04/Oct/18

3) ∫_0 ^∞   ((x sin(x))/(1+x^4 ))dx =f(1) =(π/2)ch((1/(√2)))sin((1/(√2))).

3)0xsin(x)1+x4dx=f(1)=π2ch(12)sin(12).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com